Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1994 Jan;60(1):187–194. doi: 10.1128/aem.60.1.187-194.1994

Inhibition of the lignin peroxidase of Phanerochaete chrysosporium by hydroxylamino-dinitrotoluene, an early intermediate in the degradation of 2,4,6-trinitrotoluene.

J Michels 1, G Gottschalk 1
PMCID: PMC201288  PMID: 8117077

Abstract

The ability of the white rot fungus Phanerochaete chrysosporium to mineralize 2,4,6-trinitrotoluene (TNT) was studied in the concentration range of 0.36 to 20.36 mg/liter. The initial rate of 14CO2 formation was 30% in 4 days at 0.36 mg of [14C]TNT per liter and decreased to 5% in 4 days at 20.36 mg of [14C]TNT per liter. Such a pronounced inhibition was not observed when a mixture of [14C]2-amino-4,6-dinitrotoluene and [14C]4-amino-2,6-dinitrotoluene was used as a substrate. 2-Hydroxylamino-4,6-dinitrotoluene and its isomer 4-hydroxylamino-2,6-dinitrotoluene were identified as the first detectable degradation products of TNT. Their transient accumulation correlated with the inhibition of TNT degradation and of the veratryl alcohol oxidase activity of lignin peroxidase. With purified lignin peroxidase H8, it could be shown that the two isomers of hydroxylamino-dinitrotoluene were oxidized by lignin peroxidase. The corresponding nitroso-dinitrotoluenes apparently were formed, as indicated by the formation of azoxy-tetranitrotoluenes.

Full text

PDF
187

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akamatsu Y., Ma D. B., Higuchi T., Shimada M. A novel enzymatic decarboxylation of oxalic acid by the lignin peroxidase system of white-rot fungus Phanerochaete chrysosporium. FEBS Lett. 1990 Aug 20;269(1):261–263. doi: 10.1016/0014-5793(90)81169-o. [DOI] [PubMed] [Google Scholar]
  2. Arnao M. B., Acosta M., del Río J. A., García-Cánovas F. Inactivation of peroxidase by hydrogen peroxide and its protection by a reductant agent. Biochim Biophys Acta. 1990 Mar 29;1038(1):85–89. doi: 10.1016/0167-4838(90)90014-7. [DOI] [PubMed] [Google Scholar]
  3. Barr D. P., Shah M. M., Grover T. A., Aust S. D. Production of hydroxyl radical by lignin peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys. 1992 Nov 1;298(2):480–485. doi: 10.1016/0003-9861(92)90438-3. [DOI] [PubMed] [Google Scholar]
  4. Bonnarme P., Jeffries T. W. Mn(II) Regulation of Lignin Peroxidases and Manganese-Dependent Peroxidases from Lignin-Degrading White Rot Fungi. Appl Environ Microbiol. 1990 Jan;56(1):210–217. doi: 10.1128/aem.56.1.210-217.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bryant C., DeLuca M. Purification and characterization of an oxygen-insensitive NAD(P)H nitroreductase from Enterobacter cloacae. J Biol Chem. 1991 Mar 5;266(7):4119–4125. [PubMed] [Google Scholar]
  6. DePillis G. D., Wariishi H., Gold M. H., Ortiz de Montellano P. R. Inactivation of lignin peroxidase by phenylhydrazine and sodium azide. Arch Biochem Biophys. 1990 Jul;280(1):217–223. doi: 10.1016/0003-9861(90)90539-b. [DOI] [PubMed] [Google Scholar]
  7. Faison B. D., Kirk T. K. Factors Involved in the Regulation of a Ligninase Activity in Phanerochaete chrysosporium. Appl Environ Microbiol. 1985 Feb;49(2):299–304. doi: 10.1128/aem.49.2.299-304.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fernando T., Bumpus J. A., Aust S. D. Biodegradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium. Appl Environ Microbiol. 1990 Jun;56(6):1666–1671. doi: 10.1128/aem.56.6.1666-1671.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jäger A., Croan S., Kirk T. K. Production of Ligninases and Degradation of Lignin in Agitated Submerged Cultures of Phanerochaete chrysosporium. Appl Environ Microbiol. 1985 Nov;50(5):1274–1278. doi: 10.1128/aem.50.5.1274-1278.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Paszczyński A., Huynh V. B., Crawford R. Comparison of ligninase-I and peroxidase-M2 from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys. 1986 Feb 1;244(2):750–765. doi: 10.1016/0003-9861(86)90644-2. [DOI] [PubMed] [Google Scholar]
  11. Preuss A., Fimpel J., Diekert G. Anaerobic transformation of 2,4,6-trinitrotoluene (TNT). Arch Microbiol. 1993;159(4):345–353. doi: 10.1007/BF00290917. [DOI] [PubMed] [Google Scholar]
  12. Rafil F., Franklin W., Heflich R. H., Cerniglia C. E. Reduction of nitroaromatic compounds by anaerobic bacteria isolated from the human gastrointestinal tract. Appl Environ Microbiol. 1991 Apr;57(4):962–968. doi: 10.1128/aem.57.4.962-968.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Shah M. M., Grover T. A., Aust S. D. Metabolism of cyanide by Phanerochaete chrysosporium. Arch Biochem Biophys. 1991 Oct;290(1):173–178. doi: 10.1016/0003-9861(91)90604-h. [DOI] [PubMed] [Google Scholar]
  14. Shah M. M., Grover T. A., Barr D. P., Aust S. D. On the mechanism of inhibition of the veratryl alcohol oxidase activity of lignin peroxidase H2 by EDTA. J Biol Chem. 1992 Oct 25;267(30):21564–21569. [PubMed] [Google Scholar]
  15. Spiker J. K., Crawford D. L., Crawford R. L. Influence of 2,4,6-trinitrotoluene (TNT) concentration on the degradation of TNT in explosive-contaminated soils by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 1992 Sep;58(9):3199–3202. doi: 10.1128/aem.58.9.3199-3202.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stahl J. D., Aust S. D. Metabolism and detoxification of TNT by Phanerochaete chrysosporium. Biochem Biophys Res Commun. 1993 Apr 30;192(2):477–482. doi: 10.1006/bbrc.1993.1440. [DOI] [PubMed] [Google Scholar]
  17. Stahl J. D., Aust S. D. Plasma membrane dependent reduction of 2,4,6-trinitrotoluene by Phanerochaete chrysosporium. Biochem Biophys Res Commun. 1993 Apr 30;192(2):471–476. doi: 10.1006/bbrc.1993.1439. [DOI] [PubMed] [Google Scholar]
  18. Tatsumi K., Inoue A., Yoshimura H. Mode of reactions between xanthine oxidase and aromatic nitro compounds. J Pharmacobiodyn. 1981 Feb;4(2):101–108. doi: 10.1248/bpb1978.4.101. [DOI] [PubMed] [Google Scholar]
  19. Tuisel H., Grover T. A., Bumpus J. A., Aust S. D. Inhibition of veratryl alcohol oxidase activity of lignin peroxidase H2 by 3-amino-1,2,4-triazole. Arch Biochem Biophys. 1992 Mar;293(2):287–291. doi: 10.1016/0003-9861(92)90397-f. [DOI] [PubMed] [Google Scholar]
  20. Tuisel H., Grover T. A., Lancaster J. R., Jr, Bumpus J. A., Aust S. D. Inhibition of lignin peroxidase H2 by sodium azide. Arch Biochem Biophys. 1991 Aug 1;288(2):456–462. doi: 10.1016/0003-9861(91)90220-d. [DOI] [PubMed] [Google Scholar]
  21. VILLANUEVA J. R. THE PURIFICATION OF A NITRO-REDUCTASE OF NOCARDIA V. J Biol Chem. 1964 Mar;239:773–776. [PubMed] [Google Scholar]
  22. Valli K., Brock B. J., Joshi D. K., Gold M. H. Degradation of 2,4-dinitrotoluene by the lignin-degrading fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 1992 Jan;58(1):221–228. doi: 10.1128/aem.58.1.221-228.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Won W. D., DiSalvo L. H., Ng J. Toxicity and mutagenicity of 2,4,-6-trinitrotoluene and its microbial metabolites. Appl Environ Microbiol. 1976 Apr;31(4):576–580. doi: 10.1128/aem.31.4.576-580.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES