Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1994 Jan;60(1):264–270. doi: 10.1128/aem.60.1.264-270.1994

Significant Biogenesis of Chlorinated Aromatics by Fungi in Natural Environments

Ed de Jong 1,*, Jim A Field, Henri-Eric Spinnler 2, Joannes B P A Wijnberg 3, Jan A M de Bont 1
PMCID: PMC201298  PMID: 16349156

Abstract

Common wood- and forest litter-degrading fungi produce chlorinated anisyl metabolites. These compounds, which are structurally related to xenobiotic chloroaromatics, occur at high concentrations of approximately 75 mg of chlorinated anisyl metabolites kg of wood-1 or litter-1 in the environment. The widespread ability among common fungi to produce large amounts of chlorinated aromatic compounds in the environment makes us conclude that these kinds of compounds can no longer be considered to originate mainly from anthropogenic sources.

Full text

PDF
264

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernhardt F. H., Bill E., Trautwein A. X., Twilfer H. 4-Methoxybenzoate monooxygenase from Pseudomonas putida: isolation, biochemical properties, substrate specificity, and reaction mechanisms of the enzyme components. Methods Enzymol. 1988;161:281–294. doi: 10.1016/0076-6879(88)61031-7. [DOI] [PubMed] [Google Scholar]
  2. Bollag J. M., Shuttleworth K. L., Anderson D. H. Laccase-mediated detoxification of phenolic compounds. Appl Environ Microbiol. 1988 Dec;54(12):3086–3091. doi: 10.1128/aem.54.12.3086-3091.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Crawford R. L., McCoy E., Harkin J. M., Kirk T. K., Obst J. R. Degradation of methoxylated benzoic acids by a Nocardia from a lignin-rich environment: significance to lignin degradation and effect of chloro substituents. Appl Microbiol. 1973 Aug;26(2):176–184. doi: 10.1128/am.26.2.176-184.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hautzel R., Anke H., Sheldrick W. S. Mycenon, a new metabolite from a Mycena species TA 87202 (basidiomycetes) as an inhibitor of isocitrate lyase. J Antibiot (Tokyo) 1990 Oct;43(10):1240–1244. doi: 10.7164/antibiotics.43.1240. [DOI] [PubMed] [Google Scholar]
  5. Häggblom M. M. Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev. 1992 Sep;9(1):29–71. doi: 10.1111/j.1574-6968.1992.tb05823.x. [DOI] [PubMed] [Google Scholar]
  6. Joshi D. K., Gold M. H. Degradation of 2,4,5-trichlorophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol. 1993 Jun;59(6):1779–1785. doi: 10.1128/aem.59.6.1779-1785.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mileski G. J., Bumpus J. A., Jurek M. A., Aust S. D. Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 1988 Dec;54(12):2885–2889. doi: 10.1128/aem.54.12.2885-2889.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Neilson A. H., Allard A. S., Hynning P. A., Remberger M. Transformations of halogenated aromatic aldehydes by metabolically stable anaerobic enrichment cultures. Appl Environ Microbiol. 1988 Sep;54(9):2226–2236. doi: 10.1128/aem.54.9.2226-2236.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Oberg L. G., Glas B., Swanson S. E., Rappe C., Paul K. G. Peroxidase-catalyzed oxidation of chlorophenols to polychlorinated dibenzo-p-dioxins and dibenzofurans. Arch Environ Contam Toxicol. 1990 Nov-Dec;19(6):930–938. doi: 10.1007/BF01055064. [DOI] [PubMed] [Google Scholar]
  10. Siuda J. F., DeBernardis J. F. Naturally occurring halogenated organic compounds. Lloydia. 1973 Jun;36(2):107–143. [PubMed] [Google Scholar]
  11. Thaller V., Turner J. L. Natural acetylenes. XXXV. Polyacetylenic acid and benzenoid metabolites from cultures of the fungus Lepista diemii Singer. J Chem Soc Perkin 1. 1972;16:2032–2034. doi: 10.1039/p19720002032. [DOI] [PubMed] [Google Scholar]
  12. Valli K., Gold M. H. Degradation of 2,4-dichlorophenol by the lignin-degrading fungus Phanerochaete chrysosporium. J Bacteriol. 1991 Jan;173(1):345–352. doi: 10.1128/jb.173.1.345-352.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Zhang X., Wiegel J. The anaerobic degradation of 3-chloro-4-hydroxybenzoate in freshwater sediment proceeds via either chlorophenol or hydroxybenzoate to phenol and subsequently to benzoate. Appl Environ Microbiol. 1992 Nov;58(11):3580–3585. doi: 10.1128/aem.58.11.3580-3585.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. de Jong E., Cazemier A. E., Field J. A., de Bont J. A. Physiological Role of Chlorinated Aryl Alcohols Biosynthesized De Novo by the White Rot Fungus Bjerkandera sp. Strain BOS55. Appl Environ Microbiol. 1994 Jan;60(1):271–277. doi: 10.1128/aem.60.1.271-277.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. de Jong E., Field J. A., Dings J. A., Wijnberg J. B., de Bont J. A. De-novo biosynthesis of chlorinated aromatics by the white-rot fungus Bjerkandera sp. BOS55. Formation of 3-chloro-anisaldehyde from glucose. FEBS Lett. 1992 Jul 6;305(3):220–224. doi: 10.1016/0014-5793(92)80672-4. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES