Skip to main content
British Journal of Experimental Pathology logoLink to British Journal of Experimental Pathology
. 1987 Apr;68(2):145–156.

Phenotypic evolution of CTL B-lines in vitro.

M Février, C Foa, J Simonetti, C Prevot, M Barad, M Berebbi
PMCID: PMC2013007  PMID: 3107608

Abstract

This study demonstrates that cytolytic T-cell lines exhibit progressive in-vitro modifications of their phenotype and of their growth behaviour and may use different pathways for their multiplication. Comparing three established cell lines, we firstly demonstrated that the expression of LFA-I is stable but the Lyt 2, 3 is rapidly lost. In this case, a high lectin-dependent cytotoxicity appears. Secondly, we demonstrated that two of the cell lines used the interleukin 2-interleukin 2 receptors (IL-2-IL-2R) binding pathway. Two different monoclonal antibodies showed that the IL-2 receptors distribution does not correlate with the number of functional sites which determines the IL-2 requirement. In contrast, the third cell line, although bearing high levels of IL-2 receptors, grows without the addition of IL-2; this cell growth is not inhibited by anti-IL-2 receptors monoclonal antibodies. Thirdly, it appears that the new property of IL-2 independence is associated with acquisition of the simultaneous capacity to induce tumour grafts in nude mice. As it has been recently reported that cytolytic T-lymphocytes against tumour cells could be promising immunotherapeutic agents, the spontaneous malignant transformation of such CTL lines should be taken into account before using them for adoptive immunotherapeutic purposes.

Full text

PDF
145

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrus L., Granelli-Piperno A., Reich E. Cytotoxic T cells both produce and respond to interleukin 2. J Exp Med. 1984 Feb 1;159(2):647–652. doi: 10.1084/jem.159.2.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berebbi M., Foa C., Imbert E., Fabre I., Lipcey C. Cytolytically active murine T-lymphocyte/polyoma virus-transformed fibroblast hybrids. Exp Cell Res. 1983 May;145(2):357–368. doi: 10.1016/0014-4827(83)90014-9. [DOI] [PubMed] [Google Scholar]
  3. Berke G. Cytotoxic T-lymphocytes. How do they function? Immunol Rev. 1983;72:5–42. doi: 10.1111/j.1600-065x.1983.tb01071.x. [DOI] [PubMed] [Google Scholar]
  4. Davignon D., Martz E., Reynolds T., Kürzinger K., Springer T. A. Lymphocyte function-associated antigen 1 (LFA-1): a surface antigen distinct from Lyt-2,3 that participates in T lymphocyte-mediated killing. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4535–4539. doi: 10.1073/pnas.78.7.4535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Farrar J. J., Fuller-Farrar J., Simon P. L., Hilfiker M. L., Stadler B. M., Farrar W. L. Thymoma production of T cell growth factor (Interleukin 2). J Immunol. 1980 Dec;125(6):2555–2558. [PubMed] [Google Scholar]
  6. Foa C., Bongrand P., Galindo J. R., Golstein P. Unexpected cell surface labeling in conjugates between cytotoxic T lymphocytes and target cells. J Histochem Cytochem. 1985 Jul;33(7):647–654. doi: 10.1177/33.7.2861226. [DOI] [PubMed] [Google Scholar]
  7. Gullberg M., Pobor G., Bandeira A., Larsson E. L., Coutinho A. Differential requirements for activation and growth of unprimed cytotoxic and helper T lymphocytes. Eur J Immunol. 1983 Sep;13(9):719–725. doi: 10.1002/eji.1830130906. [DOI] [PubMed] [Google Scholar]
  8. Kedar E., Weiss D. W. The in vitro generation of effector lymphocytes and their employment in tumor immunotherapy. Adv Cancer Res. 1983;38:171–287. doi: 10.1016/s0065-230x(08)60190-6. [DOI] [PubMed] [Google Scholar]
  9. Kelso A., Glasebrook A. L. Secretion of interleukin 2, macrophage-activating factor, interferon, and colony-stimulating factor by alloreactive T lymphocyte clones. J Immunol. 1984 Jun;132(6):2924–2931. [PubMed] [Google Scholar]
  10. Malek T. R., Ortega G., Jakway J. P., Chan C., Shevach E. M. The murine IL 2 receptor. II. Monoclonal anti-IL 2 receptor antibodies as specific inhibitors of T cell function in vitro. J Immunol. 1984 Oct;133(4):1976–1982. [PubMed] [Google Scholar]
  11. Malek T. R., Robb R. J., Shevach E. M. Identification and initial characterization of a rat monoclonal antibody reactive with the murine interleukin 2 receptor-ligand complex. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5694–5698. doi: 10.1073/pnas.80.18.5694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Podack E. R., Konigsberg P. J. Cytolytic T cell granules. Isolation, structural, biochemical, and functional characterization. J Exp Med. 1984 Sep 1;160(3):695–710. doi: 10.1084/jem.160.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Robb R. J., Greene W. C. Direct demonstration of the identity of T cell growth factor binding protein and the Tac antigen. J Exp Med. 1983 Oct 1;158(4):1332–1337. doi: 10.1084/jem.158.4.1332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rosenberg S. A. Adoptive immunotherapy of cancer: accomplishments and prospects. Cancer Treat Rep. 1984 Jan;68(1):233–255. [PubMed] [Google Scholar]
  15. Rosenstein M., Yron I., Kaufmann Y., Rosenberg S. A. Lymphokine-activated killer cells: lysis of fresh syngeneic natural killer-resistant murine tumor cells by lymphocytes cultured in interleukin 2. Cancer Res. 1984 May;44(5):1946–1953. [PubMed] [Google Scholar]
  16. Tsudo M., Uchiyama T., Uchino H., Yodoi J. Failure of regulation of Tac antigen/TCGF receptor on adult T-cell leukemia cells by anti-Tac monoclonal antibody. Blood. 1983 May;61(5):1014–1016. [PubMed] [Google Scholar]
  17. Wano Y., Uchiyama T., Fukui K., Maeda M., Uchino H., Yodoi J. Characterization of human interleukin 2 receptor (Tac antigen) in normal and leukemic T cells: co-expression of normal and aberrant receptors on Hut-102 cells. J Immunol. 1984 Jun;132(6):3005–3010. [PubMed] [Google Scholar]

Articles from British journal of experimental pathology are provided here courtesy of Wiley

RESOURCES