Skip to main content
British Journal of Experimental Pathology logoLink to British Journal of Experimental Pathology
. 1986 Feb;67(1):13–23.

Cellular basis of host defence in pyelonephritis. I. Chronic infection.

T E Miller, G Findon, S Cawley
PMCID: PMC2013060  PMID: 3511938

Abstract

Infection persists for long periods in chronic pyelonephritis, but the cellular basis of the host-parasite relationship is poorly understood. We have obtained quantitative data on the relationship between the pathogen (E. coli) and cellular defence mechanisms. Depletion of cellular components was carried out using whole body irradiation, methylprednisolone, cyclophosphamide or carrageenan and silica particles. A system of administering cyclophosphamide and methylprednisolone through the use of a slow release carrier, as well as graded doses of irradiation, was then developed to allow the controlled reduction of cellular competence. Quantitative studies in a host with chronic pyelonephritis and normal cellular defence reserves showed that severe depletion of granulocytic cells is necessary before host defence mechanisms are adversely affected. This finding conflicts with the observation that microorganisms survive and persist in the kidney for extended periods. Additionally, noncellular factors may also limit bacterial growth.

Full text

PDF
13

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahlstedt S., Hagberg M., Jodal U., Mårild S. Cell-mediated immune parameters in children with pyelonephritis caused by Escherichia coli. Prog Allergy. 1983;33:289–297. doi: 10.1159/000318337. [DOI] [PubMed] [Google Scholar]
  2. Coles G. A., Chick S., Hopkins M., Ling R., Radford N. J. The role of the T cell in experimental pyelonephritis. Clin Exp Immunol. 1974 Apr;16(4):629–636. [PMC free article] [PubMed] [Google Scholar]
  3. Glauser M. P., Lyons J. M., Braude A. I. Prevention of chronic experimental pyelonephritis by suppression of acute suppuration. J Clin Invest. 1978 Feb;61(2):403–407. doi: 10.1172/JCI108951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kaijser B., Larsson P., Olling S. Protection against ascending Escherichia coli pyelonephritis in rats and significance of local immunity. Infect Immun. 1978 Apr;20(1):78–81. doi: 10.1128/iai.20.1.78-81.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lee K. W., Balish E. Systemic candidosis in silica-treated athymic and euthymic mice. Infect Immun. 1983 Sep;41(3):902–907. doi: 10.1128/iai.41.3.902-907.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lehmann J. D., Smith J. W., Miller T. E., Barnett J. A., Sanford J. P. Local immune response in experimental pyelonephritis. J Clin Invest. 1969 Nov;47(11):2541–2550. doi: 10.1172/JCI105936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Miller T. E., Marshall E., Nelson J. Infection-induced immunosuppression in pyelonephritis: characteristics of the suppressor cell(s). Kidney Int. 1983 Sep;24(3):313–322. doi: 10.1038/ki.1983.160. [DOI] [PubMed] [Google Scholar]
  8. Miller T. E., Scott L., Simpson G., Ormrod D. J. Depression of the T-lymphocyte response to phytohaemagglutinin by renal cells. Clin Exp Immunol. 1976 Jun;24(3):492–500. [PMC free article] [PubMed] [Google Scholar]
  9. Miller T. E., Simpson G., Ormrod D. J. Quantitation of immunoglobulin-bearing lymphocytes and the lymphocyte response to PHA in experimental pyelonephritis. Clin Exp Immunol. 1975 Sep;21(3):474–484. doi: 10.1002/aic.690210307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Miller T., Bleumink N. Quantitative and qualitative effects of m-AMSA (amsacrine) on cellular immune components. Eur J Cancer Clin Oncol. 1984 Oct;20(10):1307–1316. doi: 10.1016/0277-5379(84)90260-8. [DOI] [PubMed] [Google Scholar]
  11. Miller T., Burnham S., Simpson G. Selective deficiency of thymus-derived lymphocytes in experimental pyelonephritis. Kidney Int. 1975 Aug;8(2):88–97. doi: 10.1038/ki.1975.84. [DOI] [PubMed] [Google Scholar]
  12. Miller T., North D. Immunobiologic factors in the pathogenesis of renal infection. Kidney Int. 1979 Dec;16(6):665–671. doi: 10.1038/ki.1979.181. [DOI] [PubMed] [Google Scholar]
  13. Miller T., Phillips S. Pyelonephritis: the relationship between infection, renal scarring, and antimicrobial therapy. Kidney Int. 1981 May;19(5):654–662. doi: 10.1038/ki.1981.65. [DOI] [PubMed] [Google Scholar]
  14. Miller T., Scott L., Stewart E., North D. Modification by suppressor cells and serum factors of the cell-mediated immune response in experimental pyelonephritis. J Clin Invest. 1978 Apr;61(4):964–972. doi: 10.1172/JCI109021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Slotki I. N., Asscher A. W. Prevention of scarring in experimental pyelonephritis in the rat by early antibiotic therapy. Nephron. 1982;30(3):262–268. doi: 10.1159/000182484. [DOI] [PubMed] [Google Scholar]
  16. Smith J. W. Role of suppressor cells in experimental pyelonephritis. J Infect Dis. 1980 Aug;142(2):199–204. doi: 10.1093/infdis/142.2.199. [DOI] [PubMed] [Google Scholar]
  17. Stewart-Tull D. E., Shimono T., Kotani S., Kato M., Ogawa Y., Yamamura Y., Koga T., Pearson C. M. The adjuvant activity of a non-toxic, water-soluble glycopeptide present in large quantities in the culture filtrate of Mycobacterium tuberculosis strain DT. Immunology. 1975 Jul;29(1):1–15. [PMC free article] [PubMed] [Google Scholar]

Articles from British journal of experimental pathology are provided here courtesy of Wiley

RESOURCES