Skip to main content
British Journal of Experimental Pathology logoLink to British Journal of Experimental Pathology
. 1986 Feb;67(1):33–42.

Relations between collateral flow and tissue salvage in the risk area after acute coronary occlusion in dogs: a topographical analysis.

Y Maruoka, H Tomoike, Y Kawachi, K Noguchi, M Nakamura
PMCID: PMC2013061  PMID: 3947533

Abstract

Localization of salvaged tissue after occlusion of the left anterior descending coronary artery due to collateral blood flow within the risk area was examined in a canine model using differential autoradiography. 125I tracer microspheres were injected into the left anterior descending artery preocclusively to define the perfusion territory as a risk area. 99mTc labelled human serum albumin microspheres were injected into both the left main and right coronary arteries 48 h after ligation to determine the collateral flow area. Using a cryotome, 50 micron transverse sections of the whole heart were taken, and 125I and 99mTc autoradiograms were obtained independently. The same specimens were stained by the nitroblue-tetrazolium method to demarcate the intact and infarcted myocardium. The tracings of the infarct, risk and collateral areas were compared and measured by a plainmeter. The collateral blood flow was distributed to 86, 55 and 42% of the epi, mid- and endo-cardial portions of the risk area respectively (P less than 0.001 between the epi- and mid- or endo-cardium). Within the collateral area 88, 58 and 63% of the epi-, mid- and endo-cardial portions were free of myocardial necrosis (P less than 0.001 between the epi- and mid- or endo-cardium). There was a close linear relationship between the size of salvaged and collateral areas (r = 0.96, P less than 0.001). Thus, a topographical analysis of the tissue salvage inside the risk area demonstrated the indispensable role of collateral blood flow for maintaining tissue viability.

Full text

PDF
33

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker L. C., Schuster E. H., Jugdutt B. I., Hutchins G. M., Bulkley B. H. Relationship between myocardial infarct size and occluded bed size in the dog: difference between left anterior descending and circumflex coronary artery occlusions. Circulation. 1983 Mar;67(3):549–557. doi: 10.1161/01.cir.67.3.549. [DOI] [PubMed] [Google Scholar]
  2. Bishop S. P., White F. C., Bloor C. M. Regional myocardial blood flow during acute myocardial infarction in the conscious dog. Circ Res. 1976 May;38(5):429–438. doi: 10.1161/01.res.38.5.429. [DOI] [PubMed] [Google Scholar]
  3. Bolli R., Goldstein R. E., Davenport N., Epstein S. E. Influence of sulfinpyrazone and naproxen on infarct size in the dog. Am J Cardiol. 1981 Apr;47(4):841–847. doi: 10.1016/0002-9149(81)90183-1. [DOI] [PubMed] [Google Scholar]
  4. Factor S. M., Okun E. M., Kirk E. S. The histological lateral border of acute canine myocardial infarction. A function of microcirculation. Circ Res. 1981 May;48(5):640–649. doi: 10.1161/01.res.48.5.640. [DOI] [PubMed] [Google Scholar]
  5. Henry P. D., Shuchleib R., Borda L. J., Roberts R., Williamson J. R., Sobel B. E. Effects of nifedipine on myocardial perfusion and ischemic injury in dogs. Circ Res. 1978 Sep;43(3):372–380. doi: 10.1161/01.res.43.3.372. [DOI] [PubMed] [Google Scholar]
  6. Heymann M. A., Payne B. D., Hoffman J. I., Rudolph A. M. Blood flow measurements with radionuclide-labeled particles. Prog Cardiovasc Dis. 1977 Jul-Aug;20(1):55–79. doi: 10.1016/s0033-0620(77)80005-4. [DOI] [PubMed] [Google Scholar]
  7. Hirzel H. O., Nelson G. R., Sonnenblick E. H., Kirk E. S. Redistribution of collateral blood flow from necrotic to surviving myocardium following coronary occlusion in the dog. Circ Res. 1976 Aug;39(2):214–222. doi: 10.1161/01.res.39.2.214. [DOI] [PubMed] [Google Scholar]
  8. Hirzel H. O., Sonnenblick E. H., Kirk E. S. Absence of a lateral border zone of intermediate creatine phosphokinase depletion surrounding a central infarct 24 hours after acute coronary occlusion in the dog. Circ Res. 1977 Nov;41(5):673–683. doi: 10.1161/01.res.41.5.673. [DOI] [PubMed] [Google Scholar]
  9. Irvin R. G., Cobb F. R. Relationship between epicardial ST-segment elevation, regional myocardial blood flow, and extent of myocardial infarction in awake dogs. Circulation. 1977 Jun;55(6):825–832. doi: 10.1161/01.cir.55.6.825. [DOI] [PubMed] [Google Scholar]
  10. Kloner R. A., Braunwald E. Observations on experimental myocardial ischaemia. Cardiovasc Res. 1980 Jul;14(7):371–395. doi: 10.1093/cvr/14.7.371. [DOI] [PubMed] [Google Scholar]
  11. Lee J. T., Ideker R. E., Reimer K. A. Myocardial infarct size and location in relation to the coronary vascular bed at risk in man. Circulation. 1981 Sep;64(3):526–534. doi: 10.1161/01.cir.64.3.526. [DOI] [PubMed] [Google Scholar]
  12. Nakamura M., Eto Y., Hamanaka N., Kuroiwa A., Tomoike H. Effects of selective coronary hypotension and nitroglycerin or Bay a 1040 on the distribution of Rb86 clearance in the canine heart. Cardiovasc Res. 1973 Nov;7(6):777–788. doi: 10.1093/cvr/7.6.777. [DOI] [PubMed] [Google Scholar]
  13. Nakamura M., Kikuchi Y., Senda Y., Yamada A., Koiwaya Y. Myocardial blood flow following experimental coronary occlusion. Effects of diltiazem. Chest. 1980 Jul;78(1 Suppl):205–209. [PubMed] [Google Scholar]
  14. Nakamura M., Tomoike H., Sakai K., Ootsubo H., Kikuchi Y. Linear relationship between perfusion area and infarct size. Basic Res Cardiol. 1981 Jul-Aug;76(4):438–442. doi: 10.1007/BF01908338. [DOI] [PubMed] [Google Scholar]
  15. Reimer K. A., Ideker R. E., Jennings R. B. Effect of coronary occlusion site on ischaemic bed size and collateral blood flow in dogs. Cardiovasc Res. 1981 Nov;15(11):668–674. doi: 10.1093/cvr/15.11.668. [DOI] [PubMed] [Google Scholar]
  16. Reimer K. A., Jennings R. B. The "wavefront phenomenon" of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest. 1979 Jun;40(6):633–644. [PubMed] [Google Scholar]
  17. Rivas F., Cobb F. R., Bache R. J., Greenfield J. C., Jr Relationship between blood flow to ischemic regions and extent of myocardial infarction. Serial measurement of blood flow to ischemic regions in dogs. Circ Res. 1976 May;38(5):439–447. doi: 10.1161/01.res.38.5.439. [DOI] [PubMed] [Google Scholar]
  18. Sakai K., Tomoike H., Ootsubo H., Kikuchi Y., Nakamura M. Preocclusive perfusion area as a determinant of infarct size in a canine model. Cardiovasc Res. 1982 Jul;16(7):408–416. doi: 10.1093/cvr/16.7.408. [DOI] [PubMed] [Google Scholar]
  19. Schaper W., Frenzel H., Hort W. Experimental coronary artery occlusion. I. Measurement of infarct size. Basic Res Cardiol. 1979 Jan-Feb;74(1):46–53. doi: 10.1007/BF01907684. [DOI] [PubMed] [Google Scholar]
  20. Schaper W., Remijsen P., Xhonneux R. The size of myocardial infarction after experimental coronary artery ligation. Z Kreislaufforsch. 1969 Aug;58(8):904–909. [PubMed] [Google Scholar]
  21. Scheel K. W., Rodriguez R. J., Ingram L. A. Directional coronary collateral growth with chronic circumflex occlusion in the dog. Circ Res. 1977 Apr;40(4):384–390. doi: 10.1161/01.res.40.4.384. [DOI] [PubMed] [Google Scholar]
  22. Tomoike H., Nakamura M., Watanabe K., Inou T., Kurozumi T., Tanaka K. Tc-99m PPi localization in acute experimental myocardial infarction: application of macro- and microautoradiography. J Nucl Med. 1982 Jan;23(1):84–85. [PubMed] [Google Scholar]
  23. Tomoike H., Ogata I., Maruoka Y., Sakai K., Kurozumi T., Nakamura M. Differential registration of two types of radionuclides on macroautoradiograms for studying coronary circulation: concise communication. J Nucl Med. 1983 Aug;24(8):693–699. [PubMed] [Google Scholar]
  24. Weiss H. R., Neubauer J. A., Lipp J. A., Sinha A. K. Quantitative determination of regional oxygen consumption in the dog heart. Circ Res. 1978 Mar;42(3):394–401. doi: 10.1161/01.res.42.3.394. [DOI] [PubMed] [Google Scholar]

Articles from British journal of experimental pathology are provided here courtesy of Wiley

RESOURCES