Abstract
Adult male rabbits were injected i.v. with 100 mg buffered formic acid per kg body weight daily for 5 days with 24 h between the doses. The fifth dose was labelled with 14C-formic acid. Rabbits were killed 1, 2 and 20 h after the last injection. The highest formic acid concentrations were found one hour after the fifth dose. Total formic acid concentrations were always higher than radiometrically measured. The maximum concentrations of formic acid in brain, heart, kidney and liver were roughly similar to the concentration which inhibits half of the cytochrome oxidase activity in vitro. Histological studies clearly demonstrated the histotoxic changes at cellular level. Calcium deposits were detected in all organs of the injected rabbits. They were absent in control animals. It seems that the formic acid metabolism is slow and that it may cause sufficient hypoxic acidosis to allow the calcium influx and cellular damage.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Billings R. E., Tephly T. R. Studies on methanol toxicity and formate metabolism in isolated hepatocytes. The role of methionine in folate-dependent reactions. Biochem Pharmacol. 1979 Oct 1;28(19):2985–2991. doi: 10.1016/0006-2952(79)90598-7. [DOI] [PubMed] [Google Scholar]
- Boudier C., Andersson K. K., Balny C., Bieth J. G. Enhancement of human leukocyte elastase activity by ionic strength. Biochem Med. 1980 Apr;23(2):219–222. doi: 10.1016/0006-2944(80)90074-5. [DOI] [PubMed] [Google Scholar]
- Brämswig J. H., Schellong G., Müller R. P., Schnepper E. Cranial computerised tomography in isosexual precocious puberty. Lancet. 1982 Mar 6;1(8271):562–562. doi: 10.1016/s0140-6736(82)92068-2. [DOI] [PubMed] [Google Scholar]
- Cheung J. Y., Bonventre J. V., Malis C. D., Leaf A. Calcium and ischemic injury. N Engl J Med. 1986 Jun 26;314(26):1670–1676. doi: 10.1056/NEJM198606263142604. [DOI] [PubMed] [Google Scholar]
- Cheung J. Y., Leaf A., Bonventre J. V. Mitochondrial function and intracellular calcium in anoxic cardiac myocytes. Am J Physiol. 1986 Jan;250(1 Pt 1):C18–C25. doi: 10.1152/ajpcell.1986.250.1.C18. [DOI] [PubMed] [Google Scholar]
- Clay K. L., Murphy R. C., Watkins W. D. Experimental methanol toxicity in the primate: analysis of metabolic acidosis. Toxicol Appl Pharmacol. 1975 Oct;34(1):49–61. doi: 10.1016/0041-008x(75)90174-x. [DOI] [PubMed] [Google Scholar]
- Dienel G. A. Regional accumulation of calcium in postischemic rat brain. J Neurochem. 1984 Oct;43(4):913–925. doi: 10.1111/j.1471-4159.1984.tb12825.x. [DOI] [PubMed] [Google Scholar]
- Eells J. T., Makar A. B., Noker P. E., Tephly T. R. Methanol poisoning and formate oxidation in nitrous oxide-treated rats. J Pharmacol Exp Ther. 1981 Apr;217(1):57–61. [PubMed] [Google Scholar]
- Farber J. L., Chien K. R., Mittnacht S., Jr Myocardial ischemia: the pathogenesis of irreversible cell injury in ischemia. Am J Pathol. 1981 Feb;102(2):271–281. [PMC free article] [PubMed] [Google Scholar]
- Hansen A. J. Effect of anoxia on ion distribution in the brain. Physiol Rev. 1985 Jan;65(1):101–148. doi: 10.1152/physrev.1985.65.1.101. [DOI] [PubMed] [Google Scholar]
- Hochachka P. W., Mommsen T. P. Protons and anaerobiosis. Science. 1983 Mar 25;219(4591):1391–1397. doi: 10.1126/science.6298937. [DOI] [PubMed] [Google Scholar]
- Iijima T., Ciani S., Hagiwara S. Effects of the external pH on Ca channels: experimental studies and theoretical considerations using a two-site, two-ion model. Proc Natl Acad Sci U S A. 1986 Feb;83(3):654–658. doi: 10.1073/pnas.83.3.654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones D. P. Renal metabolism during normoxia, hypoxia, and ischemic injury. Annu Rev Physiol. 1986;48:33–50. doi: 10.1146/annurev.ph.48.030186.000341. [DOI] [PubMed] [Google Scholar]
- Levene C. I., Bartlet C. P., Fornieri C., Heale G. Effect of hypoxia and carbon monoxide on collagen synthesis in cultured porcine and bovine aortic endothelium. Br J Exp Pathol. 1985 Aug;66(4):399–408. [PMC free article] [PubMed] [Google Scholar]
- Liesivuori J., Kettunen A. Farmers' exposure to formic acid vapour in silage making. Ann Occup Hyg. 1983;27(3):327–329. doi: 10.1093/annhyg/27.3.327. [DOI] [PubMed] [Google Scholar]
- Liesivuori J., Savolainen H. Urinary formic acid as an indicator of occupational exposure to formic acid and methanol. Am Ind Hyg Assoc J. 1987 Jan;48(1):32–34. doi: 10.1080/15298668791384328. [DOI] [PubMed] [Google Scholar]
- Liesivuori J. Slow urinary elimination of formic acid in occupationally exposed farmers. Ann Occup Hyg. 1986;30(3):329–333. doi: 10.1093/annhyg/30.3.329. [DOI] [PubMed] [Google Scholar]
- Makar A. B., McMartin K. E., Palese M., Tephly T. R. Formate assay in body fluids: application in methanol poisoning. Biochem Med. 1975 Jun;13(2):117–126. doi: 10.1016/0006-2944(75)90147-7. [DOI] [PubMed] [Google Scholar]
- Martin-Amat G., McMartin K. E., Hayreh S. S., Hayreh M. S., Tephly T. R. Methanol poisoning: ocular toxicity produced by formate. Toxicol Appl Pharmacol. 1978 Jul;45(1):201–208. doi: 10.1016/0041-008x(78)90040-6. [DOI] [PubMed] [Google Scholar]
- McMartin K. E., Ambre J. J., Tephly T. R. Methanol poisoning in human subjects. Role for formic acid accumulation in the metabolic acidosis. Am J Med. 1980 Mar;68(3):414–418. doi: 10.1016/0002-9343(80)90113-8. [DOI] [PubMed] [Google Scholar]
- McMartin K. E., Martin-Amat G., Makar A. B., Tephly T. R. Methanol poisoning. V. Role of formate metabolism in the monkey. J Pharmacol Exp Ther. 1977 Jun;201(3):564–572. [PubMed] [Google Scholar]
- Qi D. F., Schatzman R. C., Mazzei G. J., Turner R. S., Raynor R. L., Liao S., Kuo J. F. Polyamines inhibit phospholipid-sensitive and calmodulin-sensitive Ca2+-dependent protein kinases. Biochem J. 1983 Aug 1;213(2):281–288. doi: 10.1042/bj2130281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rasmussen H. Cellular calcium metabolism. Ann Intern Med. 1983 May;98(5 Pt 2):809–816. doi: 10.7326/0003-4819-98-5-809. [DOI] [PubMed] [Google Scholar]
- Savolainen H., Zitting A. Glial cell effects of subacute formic acid vapour exposure. Acta Pharmacol Toxicol (Copenh) 1980 Sep;47(3):239–240. doi: 10.1111/j.1600-0773.1980.tb01566.x. [DOI] [PubMed] [Google Scholar]
- Silinsky E. M. The biophysical pharmacology of calcium-dependent acetylcholine secretion. Pharmacol Rev. 1985 Mar;37(1):81–132. [PubMed] [Google Scholar]
- Simonson L., Baudry M., Siman R., Lynch G. Regional distribution of soluble calcium activated proteinase activity in neonatal and adult rat brain. Brain Res. 1985 Feb 18;327(1-2):153–159. doi: 10.1016/0006-8993(85)91509-4. [DOI] [PubMed] [Google Scholar]
- Zitting A., Savolainen H. Biochemical effects of subacute formic acid vapor exposure. Res Commun Chem Pathol Pharmacol. 1980 Jan;27(1):157–162. [PubMed] [Google Scholar]




