Skip to main content
British Journal of Experimental Pathology logoLink to British Journal of Experimental Pathology
. 1988 Aug;69(4):515–523.

Effects of diltiazem on suppression and regression of experimental atherosclerosis.

M Sugano 1, Y Nakashima 1, H Tasaki 1, M Takasugi 1, A Kuroiwa 1, O Koide 1
PMCID: PMC2013237  PMID: 3179199

Abstract

The effects of diltiazem (a calcium antagonist) on the suppression and regression of atherosclerosis were studied. Thirty-one rabbits were fed a 1% cholesterol (atherogenic) diet together with saline (n = 22) or diltiazem (n = 9) injections. After 10 weeks, seven rabbits that received saline and nine rabbits that received diltiazem were killed. The remaining 15 saline-treated rabbits were then put on a standard (regression) diet for the next 15 weeks with saline (n = 7) or diltiazem (n = 8) injections. Sixteen rabbits given a standard diet were used as controls. At 5 and 10 weeks, the plasma LDL cholesterol level in rabbits on the atherogenic diet with diltiazem was significantly lower than in those on the atherogenic diet with saline. The aortic total cholesterol, esterified cholesterol and calcium contents were also significantly lower in rabbits on the atherogenic diet with diltiazem. After 25 weeks (15 weeks on the regression diet), the differences in aortic total cholesterol and calcium contents between the two groups on the regression diet were not significant; however, the aortic esterified cholesterol content was significantly lower in the regression diet with diltiazem. The results suggest that diltiazem has a favourable effect both on regression and on suppression of atherosclerosis.

Full text

PDF
515

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams C. W., Morgan R. S. Regression of atheroma in the rabbit. Atherosclerosis. 1977 Dec;28(4):399–404. doi: 10.1016/0021-9150(77)90066-1. [DOI] [PubMed] [Google Scholar]
  2. Anderson P. M., Reddy R. M., Anderson K. E., Desnick R. J. Characterization of the porphobilinogen deaminase deficiency in acute intermittent porphyria. Immunologic evidence for heterogeneity of the genetic defect. J Clin Invest. 1981 Jul;68(1):1–12. doi: 10.1172/JCI110223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown W. V., Levy R. I., Fredrickson D. S. Studies of the proteins in human plasma very low density lipoproteins. J Biol Chem. 1969 Oct 25;244(20):5687–5694. [PubMed] [Google Scholar]
  4. Chan C. T., Wells H., Kramsch D. M. Suppression of calcific fibrous-fatty plaque formation in rabbits by agents not affecting elevated serum cholesterol levels. The effect of thiophene compounds. Circ Res. 1978 Jul;43(1):115–125. doi: 10.1161/01.res.43.1.115. [DOI] [PubMed] [Google Scholar]
  5. Diccianni M. B., Cardin A. D., Britt A. L., Jackson R. L., Schwartz A. Effect of a sustained release formulation of diltiazem on the development of atherosclerosis in cholesterol-fed rabbits. Atherosclerosis. 1987 Jun;65(3):199–205. doi: 10.1016/0021-9150(87)90035-9. [DOI] [PubMed] [Google Scholar]
  6. Etingin O. R., Hajjar D. P. Nifedipine increases cholesteryl ester hydrolytic activity in lipid-laden rabbit arterial smooth muscle cells. A possible mechanism for its antiatherogenic effect. J Clin Invest. 1985 May;75(5):1554–1558. doi: 10.1172/JCI111860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FRIEDMAN M., BYERS S. O. OBSERVATIONS CONCERNING THE EVOLUTION OF ATHEROSCLEROSIS IN THE RABBIT AFTER CESSATION OF CHOLESTEROL FEEDING. Am J Pathol. 1963 Sep;43:349–359. [PMC free article] [PubMed] [Google Scholar]
  8. Ginsburg R., Davis K., Bristow M. R., McKennett K., Kodsi S. R., Billingham M. E., Schroeder J. S. Calcium antagonists suppress atherogenesis in aorta but not in the intramural coronary arteries of cholesterol-fed rabbits. Lab Invest. 1983 Aug;49(2):154–158. [PubMed] [Google Scholar]
  9. Hollander W., Colombo M., Faris B., Franzblau C., Schmid K., Wernli M., Bernasconi U. Changes in the connective tissue proteins, glycosaminoglycans and calcium in the arteries of the cynomolgus monkey during atherosclerotic induction and regression. Atherosclerosis. 1984 Apr;51(1):89–108. doi: 10.1016/0021-9150(84)90146-1. [DOI] [PubMed] [Google Scholar]
  10. Kramsch D. M., Aspen A. J., Apstein C. S. Suppression of experimental atherosclerosis by the Ca++-antagonist lanthanum. Possible role of calcium in atherogenesis. J Clin Invest. 1980 May;65(5):967–981. doi: 10.1172/JCI109783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kramsch D. M., Aspen A. J., Rozler L. J. Atherosclerosis: Prevention by agents not affecting abnormal levels of blood lipids. Science. 1981 Sep 25;213(4515):1511–1512. doi: 10.1126/science.6792706. [DOI] [PubMed] [Google Scholar]
  12. Kramsch D. M., Chan C. T. The effect of agents interfering with soft tissue calcification and cell proliferation on calcific fibrous-fatty plaques in rabbits. Circ Res. 1978 Apr;42(4):562–571. doi: 10.1161/01.res.42.4.562. [DOI] [PubMed] [Google Scholar]
  13. Mendlowitz M. Arterial calcium metabolism, hypertension and arteriosclerosis. Cardiology. 1981;67(2):81–89. doi: 10.1159/000173232. [DOI] [PubMed] [Google Scholar]
  14. Nakamura M., Torii S., Yatsuki K., Kikuchi Y., Yamamoto H. Cerebral atherosclerosis in Japanese. 1. Lipids and glycosaminoglycans in cerebral arteries. Atherosclerosis. 1971 Mar-Apr;13(2):185–197. doi: 10.1016/0021-9150(71)90021-9. [DOI] [PubMed] [Google Scholar]
  15. Nakao J., Ito H., Ooyama T., Chang W. C., Murota S. Calcium dependency of aortic smooth muscle cell migration induced by 12-L-hydroxy-5,8,10,14-eicosatetraenoic acid. Effects of A23187, nicardipine and trifluoperazine. Atherosclerosis. 1983 Mar;46(3):309–319. doi: 10.1016/0021-9150(83)90180-6. [DOI] [PubMed] [Google Scholar]
  16. Ohata I., Sakamoto N., Nagano K., Maeno H. Low density lipoprotein-lowering and high density lipoprotein-elevating effects of nicardipine in rats. Biochem Pharmacol. 1984 Jul 15;33(14):2199–2205. doi: 10.1016/0006-2952(84)90654-3. [DOI] [PubMed] [Google Scholar]
  17. Potokar M., Schmidt-Dunker M. The inhibitory effect of new diphosphonic acids on aortic and kidney calcification in vivo. Atherosclerosis. 1978 Aug;30(4):313–320. doi: 10.1016/0021-9150(78)90124-7. [DOI] [PubMed] [Google Scholar]
  18. STEGEMANN H. Mikrobestimmung von Hydroxyprolin mit Chloramin-T und p-Dimethylaminobenzaldehyd. Hoppe Seylers Z Physiol Chem. 1958;311(1-3):41–45. [PubMed] [Google Scholar]
  19. Stein O., Leitersdorf E., Stein Y. Verapamil enhances receptor-mediated endocytosis of low density lipoproteins by aortic cells in culture. Arteriosclerosis. 1985 Jan-Feb;5(1):35–44. doi: 10.1161/01.atv.5.1.35. [DOI] [PubMed] [Google Scholar]
  20. Sugano M., Nakashima Y., Matsushima T., Takahara K., Takasugi M., Kuroiwa A., Koide O. Suppression of atherosclerosis in cholesterol-fed rabbits by diltiazem injection. Arteriosclerosis. 1986 Mar-Apr;6(2):237–241. doi: 10.1161/01.atv.6.2.237. [DOI] [PubMed] [Google Scholar]
  21. Warnick G. R., Cheung M. C., Albers J. J. Comparison of current methods for high-density lipoprotein cholesterol quantitation. Clin Chem. 1979 Apr;25(4):596–604. [PubMed] [Google Scholar]
  22. Whorton A. R., Willis C. E., Kent R. S., Young S. L. The role of calcium in the regulation of prostacyclin synthesis by porcine aortic endothelial cells. Lipids. 1984 Jan;19(1):17–24. doi: 10.1007/BF02534603. [DOI] [PubMed] [Google Scholar]

Articles from British journal of experimental pathology are provided here courtesy of Wiley

RESOURCES