Skip to main content
British Journal of Experimental Pathology logoLink to British Journal of Experimental Pathology
. 1988 Oct;69(5):639–650.

Mitochondrial myopathy in rats fed with a diet containing beta-guanidine propionic acid, an inhibitor of creatine entry in muscle cells.

Z Gori 1, V De Tata 1, M Pollera 1, E Bergamini 1
PMCID: PMC2013271  PMID: 3196657

Abstract

In rats with phosphoryl-creatine depletion (fed a standard Randoin-Causeret diet containing 1% beta-guanidine propionic acid) abnormal mitochondria were observed in slow skeletal muscles, often containing paracrystalline inclusions very like those induced by ischaemia or mitochondrial poisons and in human mitochondrial myopathy.

Full text

PDF
639

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antoci B., Pizzolitto S. Aspetti istoenzimatici ed ultrastructturali della miopatia mitocondriale (mitocondriopatia). Pathologica. 1984 Nov-Dec;76(1046):655–668. [PubMed] [Google Scholar]
  2. Fitch C. D., Chevli R. Measurement of beta-guanidinopropionate and phosphorylated beta-guanidinopropionate in tissues. Anal Biochem. 1975 Sep;68(1):196–201. doi: 10.1016/0003-2697(75)90694-6. [DOI] [PubMed] [Google Scholar]
  3. Fitch C. D., Chevli R., Petrofsky J. S., Kopp S. J. Sustained isometric contraction of skeletal muscle depleted of phosphocreatine. Life Sci. 1978 Sep 25;23(12):1285–1291. doi: 10.1016/0024-3205(78)90507-6. [DOI] [PubMed] [Google Scholar]
  4. Fitch C. D., Jellinek M., Fitts R. H., Baldwin K. M., Holloszy J. O. Phosphorylated beta-guanidinopropionate as a substitute for phosphocreatine in rat muscle. Am J Physiol. 1975 Apr;228(4):1123–1125. doi: 10.1152/ajplegacy.1975.228.4.1123. [DOI] [PubMed] [Google Scholar]
  5. Heine H., Schaeg G. Origin and function of 'rod-like structures' in mitochondria. Acta Anat (Basel) 1979;103(1):1–10. doi: 10.1159/000144992. [DOI] [PubMed] [Google Scholar]
  6. Laskowski M. B., Chevli R., Fitch C. D. Biochemical and ultrastructural changes in skeletal muscle induced by a creatine antagonist. Metabolism. 1981 Nov;30(11):1080–1085. doi: 10.1016/0026-0495(81)90051-2. [DOI] [PubMed] [Google Scholar]
  7. Petrofsky J. S., Fitch C. D. Contractile characteristics of skeletal muscles depleted of phosphocreatine. Pflugers Arch. 1980 Mar;384(2):123–129. doi: 10.1007/BF00584427. [DOI] [PubMed] [Google Scholar]
  8. Shields R. P., Whitehair C. K., Carrow R. E., Heusner W. W., Van Huss W. D. Skeletal muscle function and structure after depletion of creatine. Lab Invest. 1975 Aug;33(2):151–158. [PubMed] [Google Scholar]
  9. Shoubridge E. A., Challiss R. A., Hayes D. J., Radda G. K. Biochemical adaptation in the skeletal muscle of rats depleted of creatine with the substrate analogue beta-guanidinopropionic acid. Biochem J. 1985 Nov 15;232(1):125–131. doi: 10.1042/bj2320125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Shoubridge E. A., Radda G. K. A gated 31P NMR study of tetanic contraction in rat muscle depleted of phosphocreatine. Am J Physiol. 1987 May;252(5 Pt 1):C532–C542. doi: 10.1152/ajpcell.1987.252.5.C532. [DOI] [PubMed] [Google Scholar]

Articles from British journal of experimental pathology are provided here courtesy of Wiley

RESOURCES