Skip to main content
British Journal of Experimental Pathology logoLink to British Journal of Experimental Pathology
. 1988 Oct;69(5):651–660.

Genetics of resistance to infection with Candida albicans in mice.

G Marquis 1, S Montplaisir 1, M Pelletier 1, P Auger 1, W S Lapp 1
PMCID: PMC2013273  PMID: 3058198

Abstract

To determine differences in susceptibility, 234 naive mice including xid and beige mutants were infected intravenously with Candida albicans and monitored with survival analysis and quantitative culture of the kidneys. By using survival time as the criterion, animals of seven inbred strains were separated into three groups. C3H/HeJ and Dw/+ were most susceptible; C57BR/cdJ, BRVR and CBA/N (xid) were intermediate in susceptibility; C57BL/KsJ and C57BL/6J were least susceptible. Mean survival times (MST) were markedly influenced by the number of Candida cells injected while the ranking of mouse strains by survival alone was unchanged. There was a dissimilar behaviour of the strains to produce organ weight changes in response to infection when compared with uninfected mice which were matched for age and genetic lineage. Black mice had lower colony forming units (CFU) per mg of tissue at the time of death than animals of other genetic lineage. Nevertheless, the finding that MST and CFU studies were loosely correlated in a few strains of mice indicated that the proliferation of the fungus in the kidneys was not always the major cause of death. The beige mutation was found to determine an increased susceptibility to systemic Candida infection. The differences in survival for beige and nonbeige mice were influenced by the genetic lineage of the host, being much greater in the C57BL/6 strain (36.7 days) than in the C3H/He strain (5 days). C57BL/6 beige-J had significantly higher CFU per organ and per unit of weight than C57BL/6 +/+ mice. These data evinced an important contribution of host genetic factors to resistance to systemic candidiasis. It is suggested that innate resistance genes regulate the differentiation in the bone marrow and the function of cells of granulocyte-macrophage lineage.

Full text

PDF
651

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen E. M., Moore V. L., Stevens J. O. Strain variation in BCG-induced chronic pulmonary inflammation in mice. I. Basic model and possible genetic control by non-H-2 genes. J Immunol. 1977 Jul;119(1):343–347. [PubMed] [Google Scholar]
  2. Baccarini M., Bistoni F., Lohmann-Matthes M. L. In vitro natural cell-mediated cytotoxicity against Candida albicans: macrophage precursors as effector cells. J Immunol. 1985 Apr;134(4):2658–2665. [PubMed] [Google Scholar]
  3. Browder I. W., Williams D. L., Kitahama A., Di Luzio N. R. Modification of post-operative C. albicans sepsis by glucan immunostimulation. Int J Immunopharmacol. 1984;6(1):19–26. doi: 10.1016/0192-0561(84)90030-4. [DOI] [PubMed] [Google Scholar]
  4. Burgaleta C., Golde D. W. Effect of glucan on granulopoiesis and macrophage genesis in mice. Cancer Res. 1977 Jun;37(6):1739–1742. [PubMed] [Google Scholar]
  5. Carrow E. W., Hector R. F., Domer J. E. Immunodeficient CBA/N mice respond effectively to Candida albicans. Clin Immunol Immunopathol. 1984 Dec;33(3):371–380. doi: 10.1016/0090-1229(84)90308-8. [DOI] [PubMed] [Google Scholar]
  6. Cheers C., McKenzie I. F., Pavlov H., Waid C., York J. Resistance and susceptibility of mice to bacterial infection: course of listeriosis in resistant or susceptible mice. Infect Immun. 1978 Mar;19(3):763–770. doi: 10.1128/iai.19.3.763-770.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cheers C., McKenzie I. F. Resistance and susceptibility of mice to bacterial infection: genetics of listeriosis. Infect Immun. 1978 Mar;19(3):755–762. doi: 10.1128/iai.19.3.755-762.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fraser-Smith E. B., Waters R. V., Matthews T. R. Correlation between in vivo anti-Pseudomonas and anti-Candida activities and clearance of carbon by the reticuloendothelial system for various muramyl dipeptide analogs, using normal and immunosuppressed mice. Infect Immun. 1982 Jan;35(1):105–110. doi: 10.1128/iai.35.1.105-110.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HASENCLEVER H. F., MITCHELL W. O. Production in mice of tolerance to the toxic manifestations of Candida albicans. J Bacteriol. 1962 Sep;84:402–409. doi: 10.1128/jb.84.3.402-409.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hector R. F., Domer J. E., Carrow E. W. Immune responses to Candida albicans in genetically distinct mice. Infect Immun. 1982 Dec;38(3):1020–1028. doi: 10.1128/iai.38.3.1020-1028.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hirst R. G., Wallace M. E. Inherited resistance to Corynebacterium kutscheri in mice. Infect Immun. 1976 Aug;14(2):475–482. doi: 10.1128/iai.14.2.475-482.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. James S. L., Correa-Oliveira R., Leonard E. J. Defective vaccine-induced immunity to Schistosoma mansoni in P strain mice. II. Analysis of cellular responses. J Immunol. 1984 Sep;133(3):1587–1593. [PubMed] [Google Scholar]
  13. Kongshavn P. A., Punjabi C., Galsworthy S. Monocyte production and kinetics in response to listeriosis in resistant and susceptible murine hosts. Adv Exp Med Biol. 1982;155:195–200. doi: 10.1007/978-1-4684-4394-3_18. [DOI] [PubMed] [Google Scholar]
  14. Kraal G., Weissman I. L., Butcher E. C. Genetic control of T-cell subset representation in inbred mice. Immunogenetics. 1983;18(6):585–592. doi: 10.1007/BF00345966. [DOI] [PubMed] [Google Scholar]
  15. Lissner C. R., Swanson R. N., O'Brien A. D. Genetic control of the innate resistance of mice to Salmonella typhimurium: expression of the Ity gene in peritoneal and splenic macrophages isolated in vitro. J Immunol. 1983 Dec;131(6):3006–3013. [PubMed] [Google Scholar]
  16. Mandel T. E., Cheers C. Resistance and susceptibility of mice to bacterial infection: histopathology of listeriosis in resistant and susceptible strains. Infect Immun. 1980 Dec;30(3):851–861. doi: 10.1128/iai.30.3.851-861.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Matsumoto M., Matsubara S., Matsuno T., Tamura M., Hattori K., Nomura H., Ono M., Yokota T. Protective effect of human granulocyte colony-stimulating factor on microbial infection in neutropenic mice. Infect Immun. 1987 Nov;55(11):2715–2720. doi: 10.1128/iai.55.11.2715-2720.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Meister H., Heymer B., Schäfer H., Haferkamp O. Role of Candida albicans in granulomatous tissue reactions. II. In vivo degradation of C. albicans in hepatic macrophages of mice. J Infect Dis. 1977 Feb;135(2):235–242. doi: 10.1093/infdis/135.2.235. [DOI] [PubMed] [Google Scholar]
  19. Moore W. E., Holdeman L. V., Smibert R. M., Cato E. P., Burmeister J. A., Palcanis K. G., Ranney R. R. Bacteriology of experimental gingivitis in children. Infect Immun. 1984 Oct;46(1):1–6. doi: 10.1128/iai.46.1.1-6.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Neta R., Salvin S. B. Resistance and susceptibility to infection in inbred murine strains. II. Variations in the effect of treatment with thymosin fraction 5 on the release of lymphokines in vivo. Cell Immunol. 1983 Jan;75(1):173–180. doi: 10.1016/0008-8749(83)90316-7. [DOI] [PubMed] [Google Scholar]
  21. Näher H., Sperling U., Hahn H. H-2K-restricted granuloma formation by Ly-2+ T cells in antibacterial protection to facultative intracellular bacteria. J Immunol. 1985 Jan;134(1):569–572. [PubMed] [Google Scholar]
  22. Osada Y., Mitsuyama M., Une T., Matsumoto K., Otani T., Satoh M., Ogawa H., Nomoto K. Effect of L18-MDP(Ala), a synthetic derivative of muramyl dipeptide, on nonspecific resistance of mice to microbial infections. Infect Immun. 1982 Jul;37(1):292–300. doi: 10.1128/iai.37.1.292-300.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Papadimitriou J. M., Ashman R. B. The pathogenesis of acute systemic candidiasis in a susceptible inbred mouse strain. J Pathol. 1986 Dec;150(4):257–265. doi: 10.1002/path.1711500405. [DOI] [PubMed] [Google Scholar]
  24. Perito S., Vecchiarelli L., D'Errico P., Serafini S., Sbaraglia G. Patogenicità di differenti specie di Candida in un sistema sperimentale murino. Boll Soc Ital Biol Sper. 1984 Jul 31;60(7):1415–1419. [PubMed] [Google Scholar]
  25. Ruthe R. C., Andersen B. R., Cunningham B. L., Epstein R. B. Efficacy of granulocyte transfusions in the control of systemic candidiasis in the leukopenic host. Blood. 1978 Sep;52(3):493–498. [PubMed] [Google Scholar]
  26. Saltarelli C. G., Gentile K. A., Mancuso S. C. Lethality of Candida strains as influenced by the host. Can J Microbiol. 1975 May;21(5):648–654. doi: 10.1139/m75-093. [DOI] [PubMed] [Google Scholar]

Articles from British journal of experimental pathology are provided here courtesy of Wiley

RESOURCES