Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1994 Feb;60(2):467–472. doi: 10.1128/aem.60.2.467-472.1994

Carbon isotope effects associated with aceticlastic methanogenesis.

J T Gelwicks 1, J B Risatti 1, J M Hayes 1
PMCID: PMC201335  PMID: 11536629

Abstract

The carbon isotope effects associated with synthesis of methane from acetate have been determined for Methanosarcina barkeri 227 and for methanogenic archaea in sediments of Wintergreen Lake, Michigan. At 37 degrees C, the 13C isotope effect for the reaction acetate (methyl carbon) --> methane, as measured in replicate experiments with M. barkeri, was - 21.3% +/- 0.3%. The isotope effect at the carboxyl portion of acetate was essentially equal, indicating participation of both positions in the rate-determining step, as expected for reactions catalyzed by carbon monoxide dehydrogenase. A similar isotope effect, - 19.2% +/- 0.3% was found for this reaction in the natural community (temperature = 20 degrees C). Given these observations, it has been possible to model the flow of carbon to methane within lake sediment communities and to account for carbon isotope compositions of evolving methane. Extension of the model allows interpretation of seasonal fluctuations in 13C contents of methane in other systems.

Full text

PDF
467

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balch W. E., Wolfe R. S. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized atmosphere. Appl Environ Microbiol. 1976 Dec;32(6):781–791. doi: 10.1128/aem.32.6.781-791.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Belyaev S. S., Wolkin R., Kenealy W. R., Deniro M. J., Epstein S., Zeikus J. G. Methanogenic bacteria from the bondyuzhskoe oil field: general characterization and analysis of stable-carbon isotopic fractionation. Appl Environ Microbiol. 1983 Feb;45(2):691–697. doi: 10.1128/aem.45.2.691-697.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blair N. E., Martens C. S., Des Marais D. J. Natural abundances of carbon isotopes in acetate from a coastal marine sediment. Science. 1987 Apr 3;236:66–68. doi: 10.1126/science.11539717. [DOI] [PubMed] [Google Scholar]
  4. Cappenberg T. E., Prins R. A. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. 3. Experiments with 14C-labeled substrates. Antonie Van Leeuwenhoek. 1974;40(3):457–469. doi: 10.1007/BF00399358. [DOI] [PubMed] [Google Scholar]
  5. Ferry J. G. Methane from acetate. J Bacteriol. 1992 Sep;174(17):5489–5495. doi: 10.1128/jb.174.17.5489-5495.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gelwicks J. T., Hayes J. M. Carbon-isotopic analysis of dissolved acetate. Anal Chem. 1990;62:535–539. doi: 10.1021/ac00204a021. [DOI] [PubMed] [Google Scholar]
  7. Gelwicks J. T., Risatti J. B., Hayes J. M. Carbon isotope effects associated with autotrophic acetogenesis. Org Geochem. 1989;14(4):441–446. doi: 10.1016/0146-6380(89)90009-0. [DOI] [PubMed] [Google Scholar]
  8. Gerasimenko L. M., Goriunova S. V. Nekotorye tsitomorfologicheskie osobennosti Hydrodictyon reticulatum Lagerch. Mikrobiologiia. 1975 Mar-Apr;44(2):272–276. [PubMed] [Google Scholar]
  9. Grahame D. A. Catalysis of acetyl-CoA cleavage and tetrahydrosarcinapterin methylation by a carbon monoxide dehydrogenase-corrinoid enzyme complex. J Biol Chem. 1991 Nov 25;266(33):22227–22233. [PubMed] [Google Scholar]
  10. Hayes A. W., King R. E., Unger P. D., Phillips T. D., Hatkin J., Bowen J. H. Aflatoxicosis in swine. J Am Vet Med Assoc. 1978 Jun 1;172(11):1295–1297. [PubMed] [Google Scholar]
  11. Krzycki J. A., Kenealy W. R., Deniro M. J., Zeikus J. G. Stable Carbon Isotope Fractionation by Methanosarcina barkeri during Methanogenesis from Acetate, Methanol, or Carbon Dioxide-Hydrogen. Appl Environ Microbiol. 1987 Oct;53(10):2597–2599. doi: 10.1128/aem.53.10.2597-2599.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lovley D. R., Klug M. J. Intermediary metabolism of organic matter in the sediments of a eutrophic lake. Appl Environ Microbiol. 1982 Mar;43(3):552–560. doi: 10.1128/aem.43.3.552-560.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Martens C. S., Blair N. E., Green C. D., Des Marais D. J. Seasonal variations in the stable carbon isotopic signature of biogenic methane in a coastal sediment. Science. 1986 Sep 19;233(4770):1300–1303. doi: 10.1126/science.11536566. [DOI] [PubMed] [Google Scholar]
  14. Meinschein W. G., Rinaldi G. G., Hayes J. M., Schoeller D. A. Intramolecular isotopic order in biologically produced acetic acid. Biomed Mass Spectrom. 1974 Jun;1(3):172–174. doi: 10.1002/bms.1200010306. [DOI] [PubMed] [Google Scholar]
  15. Smith P. H., Mah R. A. Kinetics of acetate metabolism during sludge digestion. Appl Microbiol. 1966 May;14(3):368–371. doi: 10.1128/am.14.3.368-371.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Winfrey M. R., Zeikus J. G. Microbial methanogenesis and acetate metabolism in a meromictic lake. Appl Environ Microbiol. 1979 Feb;37(2):213–221. doi: 10.1128/aem.37.2.213-221.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wood H. G. Life with CO or CO2 and H2 as a source of carbon and energy. FASEB J. 1991 Feb;5(2):156–163. doi: 10.1096/fasebj.5.2.1900793. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES