Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1994 Feb;60(2):722–725. doi: 10.1128/aem.60.2.722-725.1994

Sensitivity of Iron-Oxidizing Bacteria, Thiobacillus ferrooxidans and Leptospirillum ferrooxidans, to Bisulfite Ion

Tsuyoshi Sugio 1,*, Satomi Uemura 1, Ikuko Makino 1, Kenji Iwahori 1, Tatsuo Tano 1, Robert C Blake II 2
PMCID: PMC201372  PMID: 16349199

Abstract

When grown on iron-salt medium supplemented with the bisulfite ion, Leptospirillum ferrooxidans was much more sensitive to the ion than was Thiobacillus ferrooxidans. The causes of the sensitivity of L. ferrooxidans to the bisulfite ion were studied. The bisulfite ion completely inhibited the iron-oxidizing activities of L. ferrooxidans and T. ferrooxidans at 0.02 and 0.2 mM, respectively. A trapping reagent for the bisulfite ion, formaldehyde, completely reversed the inhibition. The treatment of intact cells with 1.0 mM bisulfite ion for 1 h and washing the bisulfite ion from the cells had no harmful effects on the iron-oxidizing activity of T. ferrooxidans. However, the treatment of L. ferrooxidans with 0.1 mM bisulfite ion for 1 h completely destroyed the iron-oxidizing activity. T. ferrooxidans had sulfite:ferric ion oxidoreductase activity. In contrast, a quite low level of sulfite:ferric ion oxidoreductase activity was found in L. ferrooxidans, suggesting that it is much more difficult for L. ferrooxidans to oxidize the bisulfite ion to the less harmful sulfate than it is for T. ferrooxidans. These results suggest that the sensitivity of L. ferrooxidans to the bisulfite ion is due to a lack of an active sulfite:ferric ion oxidoreductase and the sensitivity of its iron oxidase to bisulfite ion.

Full text

PDF
722

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  2. Sugio T., Domatsu C., Munakata O., Tano T., Imai K. Role of a Ferric Ion-Reducing System in Sulfur Oxidation of Thiobacillus ferrooxidans. Appl Environ Microbiol. 1985 Jun;49(6):1401–1406. doi: 10.1128/aem.49.6.1401-1406.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Sugio T., Domatsu C., Tano T., Imai K. Role of Ferrous Ions in Synthetic Cobaltous Sulfide Leaching of Thiobacillus ferrooxidans. Appl Environ Microbiol. 1984 Sep;48(3):461–467. doi: 10.1128/aem.48.3.461-467.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Sugio T., Hirose T., Ye L. Z., Tano T. Purification and some properties of sulfite:ferric ion oxidoreductase from Thiobacillus ferrooxidans. J Bacteriol. 1992 Jun;174(12):4189–4192. doi: 10.1128/jb.174.12.4189-4192.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Sugio T., Katagiri T., Moriyama M., Zhèn Y. L., Inagaki K., Tano T. Existence of a new type of sulfite oxidase which utilizes ferric ions as an electron acceptor in Thiobacillus ferrooxidans. Appl Environ Microbiol. 1988 Jan;54(1):153–157. doi: 10.1128/aem.54.1.153-157.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Sugio T., Mizunashi W., Inagaki K., Tano T. Purification and some properties of sulfur:ferric ion oxidoreductase from Thiobacillus ferrooxidans. J Bacteriol. 1987 Nov;169(11):4916–4922. doi: 10.1128/jb.169.11.4916-4922.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Sugio T., White K. J., Shute E., Choate D., Blake R. C. Existence of a hydrogen sulfide:ferric ion oxidoreductase in iron-oxidizing bacteria. Appl Environ Microbiol. 1992 Jan;58(1):431–433. doi: 10.1128/aem.58.1.431-433.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Sugio Tsuyoshi, Wada Kimihito, Mori Manami, Inagaki Kenji, Tano Tatsuo. Synthesis of an Iron-Oxidizing System during Growth of Thiobacillus ferrooxidans on Sulfur-Basal Salts Medium. Appl Environ Microbiol. 1988 Jan;54(1):150–152. doi: 10.1128/aem.54.1.150-152.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES