Abstract
Bacteria in anaerobic enrichment cultures that dechlorinated a range of chlorocatechols were used to examine the stability of endogenous chlorocatechols in a contaminated sediment sample and in interstitial water prepared from it. During incubation of the sediment sample for 450 days with or without added cells, there was a decrease in the concentration of solvent-extractable chlorocatechols but not in that of the total chlorocatechols, including sediment-associated components. In the presence of azide, the decrease in the concentrations of the former was eliminated or substantially decreased. Control experiments in which 3,4,5-trichlorocatechol was added to the sediment suspensions after 130 days showed that its dechlorination was accomplished not only by the added cells but also by the endemic microbial flora. It was concluded that the endogenous chlorocatechols in the sediment were not accessible to microorganisms with dechlorinating activity. On the other hand, microorganisms were apparently responsible for decreasing the solvent extractability of the chlorocatechols, and this effect decreased with increasing length of exposure time. Similar experiments carried out for 70 days with the sediment interstitial water showed that the chlorocatechols that were known to be associated with organic matter were also inaccessible to microbial dechlorination. Experiments with model compounds in which 4,5,6-trichloroguaiacol and tetrachloroguaiacol were covalently linked to C2-guaiacyl residues showed that these compounds were resistant to O demethylation or dechlorination during incubation with a culture having these activities. The only effect of microbial action was the quantitative reduction in 12 days of the C′1 keto group to an alcohol which was stable against further transformation for up to 65 days. The results of these experiments are consistent with the existence of chlorocatechols and chloroguaiacols in contaminated sediments and illustrate the cardinal significance of bioavailability in determining their recalcitrance to dechlorination and O demethylation, respectively. It is suggested that bioavailability is an important factor in determining the persistence of xenobiotics in natural ecosystems and that its omission represents a serious limitation in the interpretation of many laboratory experiments directed towards determining the persistence of xenobiotics in aquatic ecosystems.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allard A. S., Hynning P. A., Lindgren C., Remberger M., Neilson A. H. Dechlorination of chlorocatechols by stable enrichment cultures of anaerobic bacteria. Appl Environ Microbiol. 1991 Jan;57(1):77–84. doi: 10.1128/aem.57.1.77-84.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allard A. S., Hynning P. A., Remberger M., Neilson A. H. Role of sulfate concentration in dechlorination of 3,4,5-trichlorocatechol by stable enrichment cultures grown with coumarin and flavanone glycones and aglycones. Appl Environ Microbiol. 1992 Mar;58(3):961–968. doi: 10.1128/aem.58.3.961-968.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greer L. E., Shelton D. R. Effect of inoculant strain and organic matter content on kinetics of 2,4-dichlorophenoxyacetic acid degradation in soil. Appl Environ Microbiol. 1992 May;58(5):1459–1465. doi: 10.1128/aem.58.5.1459-1465.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guerin W. F., Boyd S. A. Differential bioavailability of soil-sorbed naphthalene to two bacterial species. Appl Environ Microbiol. 1992 Apr;58(4):1142–1152. doi: 10.1128/aem.58.4.1142-1152.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harkness M. R., McDermott J. B., Abramowicz D. A., Salvo J. J., Flanagan W. P., Stephens M. L., Mondello F. J., May R. J., Lobos J. H., Carroll K. M. In situ stimulation of aerobic PCB biodegradation in Hudson River sediments. Science. 1993 Jan 22;259(5094):503–507. doi: 10.1126/science.8424172. [DOI] [PubMed] [Google Scholar]
- Jokela J., Pellinen J., Salkinoja-Salonen M. Initial steps in the pathway for bacterial degradation of two tetrameric lignin model compounds. Appl Environ Microbiol. 1987 Nov;53(11):2642–2649. doi: 10.1128/aem.53.11.2642-2649.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neilson A. H., Allard A. S., Hynning P. A., Remberger M., Landner L. Bacterial methylation of chlorinated phenols and guaiacols: formation of veratroles from guaiacols and high-molecular-weight chlorinated lignin. Appl Environ Microbiol. 1983 Mar;45(3):774–783. doi: 10.1128/aem.45.3.774-783.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neilson A. H., Allard A. S., Lindgren C., Remberger M. Transformations of chloroguaiacols, chloroveratroles, and chlorocatechols by stable consortia of anaerobic bacteria. Appl Environ Microbiol. 1987 Oct;53(10):2511–2519. doi: 10.1128/aem.53.10.2511-2519.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogram A. V., Jessup R. E., Ou L. T., Rao P. S. Effects of sorption on biological degradation rates of (2,4-dichlorophenoxy) acetic acid in soils. Appl Environ Microbiol. 1985 Mar;49(3):582–587. doi: 10.1128/aem.49.3.582-587.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vicuña R., González B., Mozuch M. D., Kirk T. K. Metabolism of Lignin Model Compounds of the Arylglycerol-beta-Aryl Ether Type by Pseudomonas acidovorans D(3). Appl Environ Microbiol. 1987 Nov;53(11):2605–2609. doi: 10.1128/aem.53.11.2605-2609.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]