Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1994 Mar;60(3):996–1005. doi: 10.1128/aem.60.3.996-1005.1994

Airborne environmental endotoxin: a cross-validation of sampling and analysis techniques.

M Walters 1, D Milton 1, L Larsson 1, T Ford 1
PMCID: PMC201423  PMID: 8161191

Abstract

A standard method for measurement of airborne environmental endotoxin was developed and field tested in a fiberglass insulation-manufacturing facility. This method involved sampling with a capillary-pore membrane filter, extraction in buffer using a sonication bath, and analysis by the kinetic-Limulus assay with resistant-parallel-line estimation (KLARE). Cross-validation of the extraction and assay method was performed by comparison with methanolysis of samples followed by 3-hydroxy fatty acid (3-OHFA) analysis by gas chromatography-mass spectrometry. Direct methanolysis of filter samples and methanolysis of buffer extracts of the filters yielded similar 3-OHFA content (P = 0.72); the average difference was 2.1%. Analysis of buffer extracts for endotoxin content by the KLARE method and by gas chromatography-mass spectrometry for 3-OHFA content produced similar results (P = 0.23); the average difference was 0.88%. The source of endotoxin was gram-negative bacteria growing in recycled washwater used to clean the insulation-manufacturing equipment. The endotoxin and bacteria become airborne during spray cleaning operations. The types of 3-OHFAs in bacteria cultured from the washwater, present in the washwater and in the air, were similar. Virtually all of the bacteria cultured from air and water were gram negative composed mostly of two species, Deleya aesta and Acinetobacter johnsonii. Airborne countable bacteria correlated well with endotoxin (r2 = 0.64). Replicate sampling showed that results with the standard sampling, extraction, and Limulus assay by the KLARE method were highly reproducible (95% confidence interval for endotoxin measurement +/- 0.28 log10). These results demonstrate the accuracy, precision, and sensitivity of the standard procedure proposed for airborne environmental endotoxin.

Full text

PDF
996

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Castellan R. M., Olenchock S. A., Kinsley K. B., Hankinson J. L. Inhaled endotoxin and decreased spirometric values. An exposure-response relation for cotton dust. N Engl J Med. 1987 Sep 3;317(10):605–610. doi: 10.1056/NEJM198709033171005. [DOI] [PubMed] [Google Scholar]
  2. Cinkotai F. F., Lockwood M. G., Rylander R. Airborne micro-organisms and prevalence of byssinotic symptoms in cotton mills. Am Ind Hyg Assoc J. 1977 Oct;38(10):554–559. doi: 10.1080/0002889778507669. [DOI] [PubMed] [Google Scholar]
  3. Ditter B., Becker K. P., Urbaschek R., Urbaschek B. Detection of endotoxin in blood and other specimens by evaluation of photometrically registered LAL-reaction-kinetics in microtiter plates. Prog Clin Biol Res. 1982;93:385–392. [PubMed] [Google Scholar]
  4. Donham K., Haglind P., Peterson Y., Rylander R., Belin L. Environmental and health studies of farm workers in Swedish swine confinement buildings. Br J Ind Med. 1989 Jan;46(1):31–37. doi: 10.1136/oem.46.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dutkiewicz J., Olenchock S. A., Sorenson W. G., Gerencser V. F., May J. J., Pratt D. S., Robinson V. A. Levels of bacteria, fungi, and endotoxin in bulk and aerosolized corn silage. Appl Environ Microbiol. 1989 May;55(5):1093–1099. doi: 10.1128/aem.55.5.1093-1099.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Flaherty D. K., Deck F. H., Cooper J., Bishop K., Winzenburger P. A., Smith L. R., Bynum L., Witmer W. B. Bacterial endotoxin isolated from a water spray air humidification system as a putative agent of occupation-related lung disease. Infect Immun. 1984 Jan;43(1):206–212. doi: 10.1128/iai.43.1.206-212.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Flaherty D. K., Deck F. H., Hood M. A., Liebert C., Singleton F., Winzenburger P., Bishop K., Smith L. R., Bynum L. M., Witmer W. B. A Cytophaga species endotoxin as a putative agent of occupation-related lung disease. Infect Immun. 1984 Jan;43(1):213–216. doi: 10.1128/iai.43.1.213-216.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Greisman S. E., Hornick R. B. Comparative pyrogenic reactivity of rabbit and man to bacterial endotoxin. Proc Soc Exp Biol Med. 1969 Sep;131(4):1154–1158. doi: 10.3181/00379727-131-34059. [DOI] [PubMed] [Google Scholar]
  9. Hobbie J. E., Daley R. J., Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol. 1977 May;33(5):1225–1228. doi: 10.1128/aem.33.5.1225-1228.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kennedy S. M., Christiani D. C., Eisen E. A., Wegman D. H., Greaves I. A., Olenchock S. A., Ye T. T., Lu P. L. Cotton dust and endotoxin exposure-response relationships in cotton textile workers. Am Rev Respir Dis. 1987 Jan;135(1):194–200. doi: 10.1164/arrd.1987.135.1.194. [DOI] [PubMed] [Google Scholar]
  11. Laitinen S., Nevalainen A., Kotimaa M., Liesivuori J., Martikainen P. J. Relationship between bacterial counts and endotoxin concentrations in the air of wastewater treatment plants. Appl Environ Microbiol. 1992 Nov;58(11):3774–3776. doi: 10.1128/aem.58.11.3774-3776.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Maitra S. K., Nachum R., Pearson F. C. Establishment of beta-hydroxy fatty acids as chemical marker molecules for bacterial endotoxin by gas chromatography-mass spectrometry. Appl Environ Microbiol. 1986 Sep;52(3):510–514. doi: 10.1128/aem.52.3.510-514.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mattsby-Baltzer I., Sandin M., Ahlström B., Allenmark S., Edebo M., Falsen E., Pedersen K., Rodin N., Thompson R. A., Edebo L. Microbial growth and accumulation in industrial metal-working fluids. Appl Environ Microbiol. 1989 Oct;55(10):2681–2689. doi: 10.1128/aem.55.10.2681-2689.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Milton D. K., Feldman H. A., Neuberg D. S., Bruckner R. J., Greaves I. A. Environmental endotoxin measurement: the Kinetic Limulus Assay with Resistant-parallel-line Estimation. Environ Res. 1992 Apr;57(2):212–230. doi: 10.1016/s0013-9351(05)80081-7. [DOI] [PubMed] [Google Scholar]
  15. Morris N. M., Catalano E. A., Berni R. J. 3-Hydroxymyristic acid as a measure of endotoxin in cotton lint and dust. Am Ind Hyg Assoc J. 1988 Feb;49(2):81–88. doi: 10.1080/15298668891379431. [DOI] [PubMed] [Google Scholar]
  16. Olenchock S. A., Mull J. C., Jones W. G. Endotoxins in cotton: washing effects and size distribution. Am J Ind Med. 1983;4(4):515–521. doi: 10.1002/ajim.4700040405. [DOI] [PubMed] [Google Scholar]
  17. Palchak R. B., Cohen R., Ainslie M., Hoerner C. L. Airborne endotoxin associated with industrial-scale production of protein products in gram-negative bacteria. Am Ind Hyg Assoc J. 1988 Aug;49(8):420–421. doi: 10.1080/15298668891379990. [DOI] [PubMed] [Google Scholar]
  18. Pearson F. C., 3rd, Weary M. E., Bohon J., Dabbah R. Relative potency of "environmental" endotoxin as measured by the Limulus amebocyte lysate test and the USP rabbit pyrogen test. Prog Clin Biol Res. 1982;93:65–77. [PubMed] [Google Scholar]
  19. Peterson A. A., McGroarty E. J. High-molecular-weight components in lipopolysaccharides of Salmonella typhimurium, Salmonella minnesota, and Escherichia coli. J Bacteriol. 1985 May;162(2):738–745. doi: 10.1128/jb.162.2.738-745.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rask-Andersen A., Malmberg P., Lundholm M. Endotoxin levels in farming: absence of symptoms despite high exposure levels. Br J Ind Med. 1989 Jun;46(6):412–416. doi: 10.1136/oem.46.6.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rivera M., Bryan L. E., Hancock R. E., McGroarty E. J. Heterogeneity of lipopolysaccharides from Pseudomonas aeruginosa: analysis of lipopolysaccharide chain length. J Bacteriol. 1988 Feb;170(2):512–521. doi: 10.1128/jb.170.2.512-521.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rylander R., Haglind P., Butcher B. T. Reactions during work shift among cotton mill workers. Chest. 1983 Oct;84(4):403–407. doi: 10.1378/chest.84.4.403. [DOI] [PubMed] [Google Scholar]
  23. Rylander R., Haglind P., Lundholm M. Endotoxin in cotton dust and respiratory function decrement among cotton workers in an experimental cardroom. Am Rev Respir Dis. 1985 Feb;131(2):209–213. doi: 10.1164/arrd.1985.131.2.209. [DOI] [PubMed] [Google Scholar]
  24. Rylander R., Haglind P., Lundholm M., Mattsby I., Stenqvist K. Humidifier fever and endotoxin exposure. Clin Allergy. 1978 Sep;8(5):511–516. doi: 10.1111/j.1365-2222.1978.tb01504.x. [DOI] [PubMed] [Google Scholar]
  25. Rylander R. Health effects of cotton dust exposures. Am J Ind Med. 1990;17(1):39–45. doi: 10.1002/ajim.4700170108. [DOI] [PubMed] [Google Scholar]
  26. Sonesson A., Larsson L., Schütz A., Hagmar L., Hallberg T. Comparison of the limulus amebocyte lysate test and gas chromatography-mass spectrometry for measuring lipopolysaccharides (endotoxins) in airborne dust from poultry-processing industries. Appl Environ Microbiol. 1990 May;56(5):1271–1278. doi: 10.1128/aem.56.5.1271-1278.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Takada H., Kotani S. Structural requirements of lipid A for endotoxicity and other biological activities. Crit Rev Microbiol. 1989;16(6):477–523. doi: 10.3109/10408418909104475. [DOI] [PubMed] [Google Scholar]
  28. Thedell T. D., Mull J. C., Olenchock S. A. A brief report of gram-negative bacterial endotoxin levels in airborne and settled dusts in animal confinement buildings. Am J Ind Med. 1980;1(1):3–7. doi: 10.1002/ajim.4700010103. [DOI] [PubMed] [Google Scholar]
  29. Vukajlovich S. W., Morrison D. C. Conversion of lipopolysaccharides to molecular aggregates with reduced subunit heterogeneity: demonstration of LPS-responsiveness in "endotoxin-unresponsive" C3H/HeJ splenocytes. J Immunol. 1983 Jun;130(6):2804–2808. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES