Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1994 Mar;60(3):1041–1043. doi: 10.1128/aem.60.3.1041-1043.1994

Isolation of a human intestinal anaerobe, Bifidobacterium sp. strain SEN, capable of hydrolyzing sennosides to sennidins.

T Akao 1, Q M Che 1, K Kobashi 1, L Yang 1, M Hattori 1, T Namba 1
PMCID: PMC201432  PMID: 8161172

Abstract

A strictly anaerobic bacterium capable of metabolizing sennosides was isolated from human feces and identified as Bifidobacterium sp., named strain SEN. The bacterium hydrolyzed sennosides A and B to sennidins A and B via sennidin A and B 8-monoglucosides, respectively. Among nine species of Bifidobacterium having beta-glucosidase activity, only Bifidobacterium dentium and B. adolescentis metabolized sennoside B to sennidin B, suggesting that the sennoside-metabolizing bacteria produce a novel type of beta-glucosidase capable of hydrolyzing sennosides to sennidins.

Full text

PDF
1041

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akao T., Akao T., Mibu K., Hattori M., Namba T., Kobashi K. Enzymatic reduction of sennidin and sennoside in Peptostreptococcus intermedius. J Pharmacobiodyn. 1985 Oct;8(10):800–807. doi: 10.1248/bpb1978.8.800. [DOI] [PubMed] [Google Scholar]
  2. Che Q. M., Akao T., Hattori M., Kobashi K., Namba T. Isolation of a human intestinal bacterium capable of transforming barbaloin to aloe-emodin anthrone. Planta Med. 1991 Feb;57(1):15–19. doi: 10.1055/s-2006-960007. [DOI] [PubMed] [Google Scholar]
  3. Dreessen M., Eyssen H., Lemli J. The metabolism of sennosides A and B by the intestinal microflora: in vitro and in vivo studies on the rat and the mouse. J Pharm Pharmacol. 1981 Oct;33(10):679–681. doi: 10.1111/j.2042-7158.1981.tb13903.x. [DOI] [PubMed] [Google Scholar]
  4. Fairbairn J. W. Chemical structure, mode of action and therapeutical activity of anthraquinone glycosides. Pharm Weekbl. 1965 Dec 17;100(51):1493–1499. [PubMed] [Google Scholar]
  5. Fairbairn J. W., Moss M. J. The relative purgative activities of 1,8-dihydroxyanthracene derivatives. J Pharm Pharmacol. 1970 Aug;22(8):584–593. doi: 10.1111/j.2042-7158.1970.tb10575.x. [DOI] [PubMed] [Google Scholar]
  6. Guilbault G. G. Enzymic methods of analysis. Rec Chem Prog. 1969 Dec;30(4):261–273. [PubMed] [Google Scholar]
  7. Hardcastle J. D., Wilkins J. L. The action of sennosides and related compounds on human colon and rectum. Gut. 1970 Dec;11(12):1038–1042. doi: 10.1136/gut.11.12.1038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hattori M., Kim G., Motoike S., Kobashi K., Namba T. Metabolism of sennosides by intestinal flora. Chem Pharm Bull (Tokyo) 1982 Apr;30(4):1338–1346. doi: 10.1248/cpb.30.1338. [DOI] [PubMed] [Google Scholar]
  9. Hattori M., Namba T., Akao T., Kobashi K. Metabolism of sennosides by human intestinal bacteria. Pharmacology. 1988;36 (Suppl 1):172–179. doi: 10.1159/000138437. [DOI] [PubMed] [Google Scholar]
  10. Kobashi K., Nishimura T., Kusaka M., Hattori M., Namba T. Metabolism of sennosides by human intestinal bacteria. Planta Med. 1980 Nov;40(3):225–236. doi: 10.1055/s-2008-1074963. [DOI] [PubMed] [Google Scholar]
  11. Lemli J., Lemmens L. Metabolism of sennosides and rhein in the rat. Pharmacology. 1980;20 (Suppl 1):50–57. doi: 10.1159/000137398. [DOI] [PubMed] [Google Scholar]
  12. Sasaki K., Yamauchi K., Kuwano S. Metabolic activation of sennoside A in mice. Planta Med. 1979 Dec;37(4):370–378. doi: 10.1055/s-0028-1097352. [DOI] [PubMed] [Google Scholar]
  13. Zwaving J. H. Recent developments in the analysis of anthraquinone derivatives. Pharmacology. 1980;20 (Suppl 1):65–75. doi: 10.1159/000137400. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES