Abstract
An unusual compound, 1,3,4,6-hexanetetracarboxylic acid, was identified by 1H and 13C two-dimensional nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry as one of the major components of the small-molecule pool in Methanobacterium thermoautotrophicum ΔH under optimal conditions of cell growth. Incorporation of 13C- and 2H-labeled acetates was consistent with the biosynthesis of this tetracarboxylic acid from α-ketoglutarate, two molecules of acetyl-coenzyme A, and one molecule of CO2, as established for the tetracarboxylic acid moiety of methanofuran. 13CO2 pulse- 12CO2 chase methodology was used to establish the turnover rate for this compound. In contrast to the two other major solutes in this bacterium, cyclic 2,3-diphosphoglycerate and glutamate, which are key metabolic intermediates, this free tetracarboxylic acid was metabolically inactive, with a half-life that exceeded the cell doubling time. Hence, this molecular pool cannot serve as a metabolic intermediate in cell biosynthesis. The functional role of free tetracarboxylate as a conservative part of a system that maintains high positive internal osmotic pressure in this bacterium is proposed.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. Methanogens: reevaluation of a unique biological group. Microbiol Rev. 1979 Jun;43(2):260–296. doi: 10.1128/mr.43.2.260-296.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daniels L., Sparling R., Sprott G. D. The bioenergetics of methanogenesis. Biochim Biophys Acta. 1984 Sep 6;768(2):113–163. doi: 10.1016/0304-4173(84)90002-8. [DOI] [PubMed] [Google Scholar]
- DiMarco A. A., Bobik T. A., Wolfe R. S. Unusual coenzymes of methanogenesis. Annu Rev Biochem. 1990;59:355–394. doi: 10.1146/annurev.bi.59.070190.002035. [DOI] [PubMed] [Google Scholar]
- Eisenreich W., Bacher A. Biosynthesis of methanofuran in Methanobacterium thermoautotrophicum. J Biol Chem. 1992 Sep 5;267(25):17574–17580. doi: 10.1515/pteridines.1994.5.1.8. [DOI] [PubMed] [Google Scholar]
- Evans J. N., Tolman C. J., Roberts M. F. Indirect observation by 13C NMR spectroscopy of a novel CO2 fixation pathway in methanogens. Science. 1986 Jan 31;231(4737):488–491. doi: 10.1126/science.3079919. [DOI] [PubMed] [Google Scholar]
- Gorkovenko A., Roberts M. F. Cyclic 2,3-diphosphoglycerate as a component of a new branch in gluconeogenesis in Methanobacterium thermoautotrophicum delta H. J Bacteriol. 1993 Jul;175(13):4087–4095. doi: 10.1128/jb.175.13.4087-4095.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones W. J., Nagle D. P., Jr, Whitman W. B. Methanogens and the diversity of archaebacteria. Microbiol Rev. 1987 Mar;51(1):135–177. doi: 10.1128/mr.51.1.135-177.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keltjens J. T., Daniels L., Jannsen H. G., Borm P. J., Vogels G. D. A novel one-carbon carrier (carboxy-5,6,7,8-tetrahydromethanopterin) isolated from Methanobacterium thermoautotrophicum and derived from methanopterin. Eur J Biochem. 1983 Feb 15;130(3):545–552. doi: 10.1111/j.1432-1033.1983.tb07184.x. [DOI] [PubMed] [Google Scholar]
- Leigh J. A., Wolfe R. S. Carbon dioxide reduction factor and methanopterin, two coenzymes required for CO2 reduction to methane by extracts of Methanobacterium. J Biol Chem. 1983 Jun 25;258(12):7536–7540. [PubMed] [Google Scholar]
- McBride B. C., Wolfe R. S. A new coenzyme of methyl transfer, coenzyme M. Biochemistry. 1971 Jun 8;10(12):2317–2324. doi: 10.1021/bi00788a022. [DOI] [PubMed] [Google Scholar]
- Sastry M. V., Robertson D. E., Moynihan J. A., Roberts M. F. Enzymatic degradation of cyclic 2,3-diphosphoglycerate to 2,3-diphosphoglycerate in Methanobacterium thermoautotrophicum. Biochemistry. 1992 Mar 24;31(11):2926–2935. doi: 10.1021/bi00126a012. [DOI] [PubMed] [Google Scholar]
- Sprott G. D., Jarrell K. F. K+, Na+, and Mg2+ content and permeability of Methanospirillum hungatei and Methanobacterium thermoautotrophicum. Can J Microbiol. 1981 Apr;27(4):444–451. doi: 10.1139/m81-067. [DOI] [PubMed] [Google Scholar]
- White R. H. Structural diversity among methanofurans from different methanogenic bacteria. J Bacteriol. 1988 Oct;170(10):4594–4597. doi: 10.1128/jb.170.10.4594-4597.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Beelen P., Labro J. F., Keltjens J. T., Geerts W. J., Vogels G. D., Laarhoven W. H., Guijt W., Haasnoot C. A. Derivatives of methanopterin, a coenzyme involved in methanogenesis. Eur J Biochem. 1984 Mar 1;139(2):359–365. doi: 10.1111/j.1432-1033.1984.tb08014.x. [DOI] [PubMed] [Google Scholar]
- van Beelen P., Stassen A. P., Bosch J. W., Vogels G. D., Guijt W., Haasnoot C. A. Elucidation of the structure of methanopterin, a coenzyme from Methanobacterium thermoautotrophicum, using two-dimensional nuclear-magnetic-resonance techniques. Eur J Biochem. 1984 Feb 1;138(3):563–571. doi: 10.1111/j.1432-1033.1984.tb07951.x. [DOI] [PubMed] [Google Scholar]
