Abstract
We determined the effects of grain size and nutritional conditions on the penetration rate and metabolic activity of Escherichia coli strains in anaerobic, nutrient-saturated chambers packed with different sizes of glass beads (diameters, 116 to 767 μm) under static conditions. The chambers had nearly equal porosities (38%) but different calculated pore sizes (range, 10 to 65 μm). Motile strains always penetrated faster than nonmotile strains, and nutrient conditions that resulted in faster growth rates (fermentative conditions versus nitrate-respiring conditions) resulted in faster penetration rates for both motile and nonmotile strains for all of the bead sizes tested. The penetration rate of nonmotile strains increased linearly when bead size was increased, while the penetration rate of motile strains became independent of the bead size when beads having diameters of 398 μm or greater were used. The rate of H2 production and the final amount of H2 produced decreased when bead size was decreased. However, the final protein concentrations were similar in chambers packed with 116-, 192-, and 281-μm beads and were only slightly higher in chambers packed with 398- and 767-μm beads. Our data indicated that conditions that favored faster growth rates also resulted in faster penetration times and that the lower penetration rates observed in chambers packed with small beads were due to restriction of bacterial activity in the small pores. The large increases in the final amount of hydrogen produced without corresponding increases in the final amount of protein made indicated that metabolism became uncoupled from cell mass biosynthesis as bead size increased, suggesting that pore size influenced the efficiency of substrate utilization.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adler J., Dahl M. M. A method for measuring the motility of bacteria and for comparing random and non-random motility. J Gen Microbiol. 1967 Feb;46(2):161–173. doi: 10.1099/00221287-46-2-161. [DOI] [PubMed] [Google Scholar]
- Balch W. E., Wolfe R. S. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized atmosphere. Appl Environ Microbiol. 1976 Dec;32(6):781–791. doi: 10.1128/aem.32.6.781-791.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balkwill D. L., Fredrickson J. K., Thomas J. M. Vertical and horizontal variations in the physiological diversity of the aerobic chemoheterotrophic bacterial microflora in deep southeast coastal plain subsurface sediments. Appl Environ Microbiol. 1989 May;55(5):1058–1065. doi: 10.1128/aem.55.5.1058-1065.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bryant M. P. Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr. 1972 Dec;25(12):1324–1328. doi: 10.1093/ajcn/25.12.1324. [DOI] [PubMed] [Google Scholar]
- Chapelle F. H., Lovley D. R. Rates of microbial metabolism in deep coastal plain aquifers. Appl Environ Microbiol. 1990 Jun;56(6):1865–1874. doi: 10.1128/aem.56.6.1865-1874.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeWeerd K. A., Concannon F., Suflita J. M. Relationship between hydrogen consumption, dehalogenation, and the reduction of sulfur oxyanions by Desulfomonile tiedjei. Appl Environ Microbiol. 1991 Jul;57(7):1929–1934. doi: 10.1128/aem.57.7.1929-1934.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fontes D. E., Mills A. L., Hornberger G. M., Herman J. S. Physical and chemical factors influencing transport of microorganisms through porous media. Appl Environ Microbiol. 1991 Sep;57(9):2473–2481. doi: 10.1128/aem.57.9.2473-2481.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gannon J. T., Manilal V. B., Alexander M. Relationship between Cell Surface Properties and Transport of Bacteria through Soil. Appl Environ Microbiol. 1991 Jan;57(1):190–193. doi: 10.1128/aem.57.1.190-193.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jang L. K., Chang P. W., Findley J. E., Yen T. F. Selection of bacteria with favorable transport properties through porous rock for the application of microbial-enhanced oil recovery. Appl Environ Microbiol. 1983 Nov;46(5):1066–1072. doi: 10.1128/aem.46.5.1066-1072.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jenneman G. E., McInerney M. J., Crocker M. E., Knapp R. M. Effect of Sterilization by Dry Heat or Autoclaving on Bacterial Penetration through Berea Sandstone. Appl Environ Microbiol. 1986 Jan;51(1):39–43. doi: 10.1128/aem.51.1.39-43.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jenneman G. E., McInerney M. J., Knapp R. M. Microbial Penetration through Nutrient-Saturated Berea Sandstone. Appl Environ Microbiol. 1985 Aug;50(2):383–391. doi: 10.1128/aem.50.2.383-391.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nazarenko A. V., Nesterov A. I., Pitriuk A. P., Nazarenko V. M. Razvitie metanokisliaiushchikh bakterii v stekliannykh kapilliarakh. Mikrobiologiia. 1974 Jan-Feb;43(1):146–151. [PubMed] [Google Scholar]
- Ou L. T., Alexander M. Influence of glass microbeads on growth, activity and morphological changes of Bacillus megaterium. Arch Microbiol. 1974;101(1):35–44. doi: 10.1007/BF00455923. [DOI] [PubMed] [Google Scholar]
- Reynolds P. J., Sharma P., Jenneman G. E., McInerney M. J. Mechanisms of microbial movement in subsurface materials. Appl Environ Microbiol. 1989 Sep;55(9):2280–2286. doi: 10.1128/aem.55.9.2280-2286.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharma P. K., McInerney M. J., Knapp R. M. In situ growth and activity and modes of penetration of Escherichia coli in unconsolidated porous materials. Appl Environ Microbiol. 1993 Nov;59(11):3686–3694. doi: 10.1128/aem.59.11.3686-3694.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- van Loosdrecht M. C., Lyklema J., Norde W., Zehnder A. J. Influence of interfaces on microbial activity. Microbiol Rev. 1990 Mar;54(1):75–87. doi: 10.1128/mr.54.1.75-87.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]