Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1994 May;60(5):1561–1564. doi: 10.1128/aem.60.5.1561-1564.1994

Production of 26-deoxymonensins A and B by Streptomyces cinnamonensis in the presence of Metyrapone.

S Pospísil 1, P Sedmera 1, V Havlícek 1, J Tax 1
PMCID: PMC201517  PMID: 8017935

Abstract

Metyrapone, a potent cytochrome P-450 inhibitor, added at 9 mM to a submerged culture of Streptomyces cinnamonensis caused partial inhibition of total monensin biosynthesis and coproduction of new metabolites, 26-deoxymonensins A and B. The latter was isolated as its 25-O-methyl derivative. Metyrapone was simultaneously reduced to metyrapol. All of these compounds were identified by nuclear magnetic resonance spectroscopy and mass spectrometry.

Full text

PDF
1561

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashworth D. M., Holmes D. S., Robinson J. A., Oikawa H., Cane D. E. Selection of a specifically blocked mutant of Streptomyces cinnamonensis: isolation and synthesis of 26-deoxymonensin A. J Antibiot (Tokyo) 1989 Jul;42(7):1088–1099. doi: 10.7164/antibiotics.42.1088. [DOI] [PubMed] [Google Scholar]
  2. Damani L. A., Crooks P. A., Cowan D. A. Metabolism of metyrapone. III. Formation of an alpha-pyridone metabolite by rat hepatic soluble enzymes. Drug Metab Dispos. 1981 May-Jun;9(3):270–273. [PubMed] [Google Scholar]
  3. Day L. E., Chamberlin J. W., Gordee E. Z., Chen S., Gorman M., Hamill R. L., Ness T., Weeks R. E., Stroshane R. Biosynthesis of monensin. Antimicrob Agents Chemother. 1973 Oct;4(4):410–414. doi: 10.1128/aac.4.4.410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hopwood D. A., Sherman D. H. Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu Rev Genet. 1990;24:37–66. doi: 10.1146/annurev.ge.24.120190.000345. [DOI] [PubMed] [Google Scholar]
  5. Maser E., Oppermann U. C., Bannenberg G., Netter K. J. Functional and immunological relationships between metyrapone reductase from mouse liver microsomes and 3 alpha-hydroxysteroid dehydrogenase from Pseudomonas testosteroni. FEBS Lett. 1992 Feb 3;297(1-2):196–200. doi: 10.1016/0014-5793(92)80359-o. [DOI] [PubMed] [Google Scholar]
  6. O'Keefe D. P., Harder P. A. Occurrence and biological function of cytochrome P450 monooxygenases in the actinomycetes. Mol Microbiol. 1991 Sep;5(9):2099–2105. doi: 10.1111/j.1365-2958.1991.tb02139.x. [DOI] [PubMed] [Google Scholar]
  7. Pospísil S., Sedmera P., Krumphanzl V., Vanek Z. Biosynthesis of monensins A and B: the role of isoleucine. Folia Microbiol (Praha) 1986;31(1):8–14. doi: 10.1007/BF02928674. [DOI] [PubMed] [Google Scholar]
  8. Pospísil S., Sedmera P., Vokoun J., Vanek Z., Budesínský M. 3-O-demethylmonensins A and B produced by Streptomyces cinnamonensis. J Antibiot (Tokyo) 1987 Apr;40(4):555–557. doi: 10.7164/antibiotics.40.555. [DOI] [PubMed] [Google Scholar]
  9. Sariaslani F. S., Kunz D. A. Induction of cytochrome P-450 in Streptomyces griseus by soybean flour. Biochem Biophys Res Commun. 1986 Dec 15;141(2):405–410. doi: 10.1016/s0006-291x(86)80187-5. [DOI] [PubMed] [Google Scholar]
  10. Shafiee A., Hutchinson C. R. Purification and reconstitution of the electron transport components for 6-deoxyerythronolide B hydroxylase, a cytochrome P-450 enzyme of macrolide antibiotic (erythromycin) biosynthesis. J Bacteriol. 1988 Apr;170(4):1548–1553. doi: 10.1128/jb.170.4.1548-1553.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Weber J. M., Leung J. O., Swanson S. J., Idler K. B., McAlpine J. B. An erythromycin derivative produced by targeted gene disruption in Saccharopolyspora erythraea. Science. 1991 Apr 5;252(5002):114–117. doi: 10.1126/science.2011746. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES