Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1994 May;60(5):1630–1634. doi: 10.1128/aem.60.5.1630-1634.1994

Sodium chloride induces an NhaA/NhaR-independent acid sensitivity at neutral external pH in Escherichia coli.

R J Rowbury 1, M Goodson 1, T J Humphrey 1
PMCID: PMC201528  PMID: 8017942

Abstract

Escherichia coli previously grown in low-salt broth, pH 7.0, produced organisms which were markedly more acid sensitive when subsequently cultured in the same broth with 200 mM or more salt (NaCl) added. Induction of acid sensitivity occurred rapidly at both 37 and 30 degrees C, with a substantial effect within 15 min. Sensitization was partially inhibited by chloramphenicol and tetracycline and may depend on both protein synthesis-dependent and -independent physiological changes in the NaCl-induced organisms; sensitization did not result from osmotic shocking on transfer to challenge medium. Induction of acid sensitivity was affected by neither the sodium ion pore inhibitor amiloride nor the DNA synthesis inhibitor nalidixic acid; rifampin had a small effect, similar to that of chloramphenicol. Chlorides of other monovalent cations, especially Li+ and NH4+, also produced sensitization to acid, although CsCl was ineffective but did not interfere with sensitization by NaCl. Other sodium salts were also active as sensitizers, as were chlorides of divalent cations, but although sucrose (but not glycerol) was a good inducer, the results were not fully in accord with triggering of induction solely by the NaCl-associated increase in osmotic pressure. Sensitization was not prevented by deletion of the nhaA, nhaR, or nhaB gene. Acid sensitivity of NaCl-induced cells was slightly reduced after 90 min of growth at 37 degrees C in low-salt broth but was completely lost after 240 min. For NaCl-induced cells, acid killing in challenge media was not inhibited by amiloride. The NaCl-induced sensitization is distinct from the phenomenon of acid sensitivity induction in E. coli at alkaline external pH.

Full text

PDF
1630

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belli W. A., Marquis R. E. Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture. Appl Environ Microbiol. 1991 Apr;57(4):1134–1138. doi: 10.1128/aem.57.4.1134-1138.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Demple B., Halbrook J. Inducible repair of oxidative DNA damage in Escherichia coli. Nature. 1983 Aug 4;304(5925):466–468. doi: 10.1038/304466a0. [DOI] [PubMed] [Google Scholar]
  3. Foster J. W., Hall H. K. Adaptive acidification tolerance response of Salmonella typhimurium. J Bacteriol. 1990 Feb;172(2):771–778. doi: 10.1128/jb.172.2.771-778.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Foster J. W. The acid tolerance response of Salmonella typhimurium involves transient synthesis of key acid shock proteins. J Bacteriol. 1993 Apr;175(7):1981–1987. doi: 10.1128/jb.175.7.1981-1987.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gale E. F., Epps H. M. The effect of the pH of the medium during growth on the enzymic activities of bacteria (Escherichia coli and Micrococcus lysodeikticus) and the biological significance of the changes produced. Biochem J. 1942 Sep;36(7-9):600–618. doi: 10.1042/bj0360600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hassani M., Pincus D. H., Bennett G. N., Hirshfield I. N. Temperature-dependent induction of an acid-inducible stimulon of Escherichia coli in broth. Appl Environ Microbiol. 1992 Aug;58(8):2704–2707. doi: 10.1128/aem.58.8.2704-2707.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hicks S. J., Rowbury R. J. Virulence plasmid-associated adhesion of Escherichia coli and its significance for chlorine resistance. J Appl Bacteriol. 1986 Sep;61(3):209–218. doi: 10.1111/j.1365-2672.1986.tb04278.x. [DOI] [PubMed] [Google Scholar]
  8. Jenkins D. E., Chaisson S. A., Matin A. Starvation-induced cross protection against osmotic challenge in Escherichia coli. J Bacteriol. 1990 May;172(5):2779–2781. doi: 10.1128/jb.172.5.2779-2781.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jenkins D. E., Schultz J. E., Matin A. Starvation-induced cross protection against heat or H2O2 challenge in Escherichia coli. J Bacteriol. 1988 Sep;170(9):3910–3914. doi: 10.1128/jb.170.9.3910-3914.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Karpel R., Alon T., Glaser G., Schuldiner S., Padan E. Expression of a sodium proton antiporter (NhaA) in Escherichia coli is induced by Na+ and Li+ ions. J Biol Chem. 1991 Nov 15;266(32):21753–21759. [PubMed] [Google Scholar]
  11. Meng S. Y., Bennett G. N. Regulation of the Escherichia coli cad operon: location of a site required for acid induction. J Bacteriol. 1992 Apr;174(8):2670–2678. doi: 10.1128/jb.174.8.2670-2678.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Michel G. P., Starka J. Effect of ethanol and heat stresses on the protein pattern of Zymomonas mobilis. J Bacteriol. 1986 Mar;165(3):1040–1042. doi: 10.1128/jb.165.3.1040-1042.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ni Bhriain N., Dorman C. J., Higgins C. F. An overlap between osmotic and anaerobic stress responses: a potential role for DNA supercoiling in the coordinate regulation of gene expression. Mol Microbiol. 1989 Jul;3(7):933–942. doi: 10.1111/j.1365-2958.1989.tb00243.x. [DOI] [PubMed] [Google Scholar]
  14. Ohyama T., Imaizumi R., Igarashi K., Kobayashi H. Escherichia coli is able to grow with negligible sodium ion extrusion activity at alkaline pH. J Bacteriol. 1992 Dec;174(23):7743–7749. doi: 10.1128/jb.174.23.7743-7749.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Padan E., Maisler N., Taglicht D., Karpel R., Schuldiner S. Deletion of ant in Escherichia coli reveals its function in adaptation to high salinity and an alternative Na+/H+ antiporter system(s). J Biol Chem. 1989 Dec 5;264(34):20297–20302. [PubMed] [Google Scholar]
  16. Rahav-Manor O., Carmel O., Karpel R., Taglicht D., Glaser G., Schuldiner S., Padan E. NhaR, a protein homologous to a family of bacterial regulatory proteins (LysR), regulates nhaA, the sodium proton antiporter gene in Escherichia coli. J Biol Chem. 1992 May 25;267(15):10433–10438. [PubMed] [Google Scholar]
  17. Samson L., Cairns J. A new pathway for DNA repair in Escherichia coli. Nature. 1977 May 19;267(5608):281–283. doi: 10.1038/267281a0. [DOI] [PubMed] [Google Scholar]
  18. Thomas A. D., Booth I. R. The regulation of expression of the porin gene ompC by acid pH. J Gen Microbiol. 1992 Sep;138(9):1829–1835. doi: 10.1099/00221287-138-9-1829. [DOI] [PubMed] [Google Scholar]
  19. Watson N., Dunyak D. S., Rosey E. L., Slonczewski J. L., Olson E. R. Identification of elements involved in transcriptional regulation of the Escherichia coli cad operon by external pH. J Bacteriol. 1992 Jan;174(2):530–540. doi: 10.1128/jb.174.2.530-540.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES