Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1994 Jun;60(6):1783–1788. doi: 10.1128/aem.60.6.1783-1788.1994

Anisaldehyde production and aryl-alcohol oxidase and dehydrogenase activities in ligninolytic fungi of the genus Pleurotus.

A Gutiérrez 1, L Caramelo 1, A Prieto 1, M J Martínez 1, A T Martínez 1
PMCID: PMC201562  PMID: 8031078

Abstract

A variety of simple aromatic compounds were identified in liquid cultures of the basidiomycetes Pleurotus cornucopiae, P. eryngii, P. floridanus, P. pulmonarius, P. ostreatus, and P. sajor-caju by using gas chromatography-mass spectrometry. Such compounds were detected in fungal cultures on lignin- and straw-containing media, but it was found that they were also produced in the absence of aromatic precursors. Anisylic and hydroxybenzylic compounds (such as alcohols, aldehydes, and acids) were identified, p-anisaldehyde being the most characteristic extracellular metabolite synthesized by these ligninolytic fungi. Small amounts of 3-chloro-p-anisaldehyde were also detected in several species. It is postulated that the balance between the more-or-less-oxidized aromatic compounds can be explained in terms of the activity of fungal enzymes, including aryl-alcohol oxidase and dehydrogenase. The former enzyme shows high affinity for p-anisyl alcohol, which is oxidized to p-anisaldehyde with production of H2O2. The aryl-alcohol dehydrogenase was detected only in the mycelium, where it reduces aromatic aldehydes in the presence of NADPH. Both enzymes could be involved in the redox cycling of these aromatic compounds, providing H2O2 to ligninolytic peroxidases.

Full text

PDF
1783

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BIRKINSHAW J. H., MORGAN E. N., FINDLAY W. P. K. Biochemistry of the wood-rotting fungi. VII. Metabolic products of Polyporus benzoinus (Wahl.) Fr. Biochem J. 1952 Feb;50(4):509–516. doi: 10.1042/bj0500509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bourbonnais R., Paice M. G. Veratryl alcohol oxidases from the lignin-degrading basidiomycete Pleurotus sajor-caju. Biochem J. 1988 Oct 15;255(2):445–450. doi: 10.1042/bj2550445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. González R., Fernández-Alfonso M. S., Rodríguez-Martinez M. A., Fuertes E., Angulo J., Sánchez-Ferrer C. F., Marín J. Pressure-induced contraction of the juxtamedullary afferent arterioles in spontaneously hypertensive rats. Gen Pharmacol. 1994 Mar;25(2):333–339. doi: 10.1016/0306-3623(94)90063-9. [DOI] [PubMed] [Google Scholar]
  4. Guillén F., Martínez A. T., Martínez M. J. Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Eur J Biochem. 1992 Oct 15;209(2):603–611. doi: 10.1111/j.1432-1033.1992.tb17326.x. [DOI] [PubMed] [Google Scholar]
  5. Jensen K. A., Evans K. M., Kirk T. K., Hammel K. E. Biosynthetic Pathway for Veratryl Alcohol in the Ligninolytic Fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 1994 Feb;60(2):709–714. doi: 10.1128/aem.60.2.709-714.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kirk T. K., Farrell R. L. Enzymatic "combustion": the microbial degradation of lignin. Annu Rev Microbiol. 1987;41:465–505. doi: 10.1146/annurev.mi.41.100187.002341. [DOI] [PubMed] [Google Scholar]
  7. Lewis N. G., Yamamoto E. Lignin: occurrence, biogenesis and biodegradation. Annu Rev Plant Physiol Plant Mol Biol. 1990;41:455–496. doi: 10.1146/annurev.pp.41.060190.002323. [DOI] [PubMed] [Google Scholar]
  8. Muheim A., Waldner R., Sanglard D., Reiser J., Schoemaker H. E., Leisola M. S. Purification and properties of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium. Eur J Biochem. 1991 Jan 30;195(2):369–375. doi: 10.1111/j.1432-1033.1991.tb15715.x. [DOI] [PubMed] [Google Scholar]
  9. Niku-Paavola M. L., Karhunen E., Salola P., Raunio V. Ligninolytic enzymes of the white-rot fungus Phlebia radiata. Biochem J. 1988 Sep 15;254(3):877–883. doi: 10.1042/bj2540877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Paszczynski A., Crawford R. L. Degradation of azo compounds by ligninase from Phanerochaete chrysosporium: involvement of veratryl alcohol. Biochem Biophys Res Commun. 1991 Aug 15;178(3):1056–1063. doi: 10.1016/0006-291x(91)90999-n. [DOI] [PubMed] [Google Scholar]
  11. Perez J., Jeffries T. W. Mineralization of C-Ring-Labeled Synthetic Lignin Correlates with the Production of Lignin Peroxidase, not of Manganese Peroxidase or Laccase. Appl Environ Microbiol. 1990 Jun;56(6):1806–1812. doi: 10.1128/aem.56.6.1806-1812.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Périé F. H., Gold M. H. Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens. Appl Environ Microbiol. 1991 Aug;57(8):2240–2245. doi: 10.1128/aem.57.8.2240-2245.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sannia G., Limongi P., Cocca E., Buonocore F., Nitti G., Giardina P. Purification and characterization of a veratryl alcohol oxidase enzyme from the lignin degrading basidiomycete Pleurotus ostreatus. Biochim Biophys Acta. 1991 Jan 23;1073(1):114–119. doi: 10.1016/0304-4165(91)90190-r. [DOI] [PubMed] [Google Scholar]
  14. Sarkanen S., Razal R. A., Piccariello T., Yamamoto E., Lewis N. G. Lignin peroxidase: toward a clarification of its role in vivo. J Biol Chem. 1991 Feb 25;266(6):3636–3643. [PubMed] [Google Scholar]
  15. de Jong E., Field J. A., Dings J. A., Wijnberg J. B., de Bont J. A. De-novo biosynthesis of chlorinated aromatics by the white-rot fungus Bjerkandera sp. BOS55. Formation of 3-chloro-anisaldehyde from glucose. FEBS Lett. 1992 Jul 6;305(3):220–224. doi: 10.1016/0014-5793(92)80672-4. [DOI] [PubMed] [Google Scholar]
  16. de Jong E., van Berkel W. J., van der Zwan R. P., de Bont J. A. Purification and characterization of vanillyl-alcohol oxidase from Penicillium simplicissimum. A novel aromatic alcohol oxidase containing covalently bound FAD. Eur J Biochem. 1992 Sep 15;208(3):651–657. doi: 10.1111/j.1432-1033.1992.tb17231.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES