Abstract
Aspergillus fumigatus ATCC 28282 was found to be capable of growth on 4-ethylphenol as its sole carbon and energy source. A pathway for the metabolism of this compound has been proposed. The initial step involves hydroxylation of the methylene group of 4-ethylphenol to form 1-(4'-hydroxyphenyl)ethanol, followed by oxidation to 4-hydroxyacetophenone. The hydroxylase was NADPH and oxygen dependent, which is a characteristic of a monooxygenase type of enzyme. The 1-(4'-hydroxyphenyl)ethanol isolated from growth medium was a racemic mixture of R-(+) and S-(-) enantiomers. 4-Hydroxyacetophenone undergoes an NADPH-dependent Baeyer-Villiger type of oxygenation to give 4-hydroxyphenyl acetate, which is hydrolyzed to form hydroquinone (1,4-dihydroxybenzene). Hydroxylation of hydroquinone by an NADPH-dependent enzyme produces 1,2,4-trihydroxybenzene, the ring fission substrate, which is cleaved by ortho fission to form maleylacetate. The pathway was elucidated by various kinds of investigations. Analysis of culture medium sampled during growth on 4-ethylphenol revealed the transient appearance of 1-(4'-hydroxyphenyl)ethanol, 4-hydroxyacetophenone, and hydroquinone. Cells grown on 4-ethylphenol were able to oxidize all of these compounds immediately, whereas oxidation by succinate-grown cells showed a lag period. Extracts prepared from cells grown on 4-ethylphenol contained enzyme activities for all of the proposed steps. Apart from a low level of esterase activity towards 4-hydroxyphenyl acetate, extracts prepared from cells grown on succinate did not contain any of these enzyme activities.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson J. J., Dagley S. Catabolism of aromatic acids in Trichosporon cutaneum. J Bacteriol. 1980 Feb;141(2):534–543. doi: 10.1128/jb.141.2.534-543.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapman P. J., Ribbons D. W. Metabolism of resorcinylic compounds by bacteria: alternative pathways for resorcinol catabolism in Pseudomonas putida. J Bacteriol. 1976 Mar;125(3):985–998. doi: 10.1128/jb.125.3.985-998.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cripps R. E. The microbial metabolism of acetophenone. Metabolism of acetophenone and some chloroacetophenones by an Arthrobacter species. Biochem J. 1975 Nov;152(2):233–241. doi: 10.1042/bj1520233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones K. H., Trudgill P. W., Hopper D. J. Metabolism of p-Cresol by the Fungus Aspergillus fumigatus. Appl Environ Microbiol. 1993 Apr;59(4):1125–1130. doi: 10.1128/aem.59.4.1125-1130.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LACK L. Enzymic cis-trans isomerization of maleylpyruvic acid. J Biol Chem. 1961 Nov;236:2835–2840. [PubMed] [Google Scholar]
- Martin A. K. The origin of urinary aromatic compounds excreted by ruminants. 3. The metabolism of phenolic compounds to simple phenols. Br J Nutr. 1982 Nov;48(3):497–507. doi: 10.1079/bjn19820135. [DOI] [PubMed] [Google Scholar]
- McIntire W., Hopper D. J., Singer T. P. p-Cresol methylhydroxylase. Assay and general properties. Biochem J. 1985 Jun 1;228(2):325–335. doi: 10.1042/bj2280325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Middelhoven W. J., Coenen A., Kraakman B., Sollewijn Gelpke M. D. Degradation of some phenols and hydroxybenzoates by the imperfect ascomycetous yeasts Candida parapsilosis and Arxula adeninivorans: evidence for an operative gentisate pathway. Antonie Van Leeuwenhoek. 1992 Oct;62(3):181–187. doi: 10.1007/BF00582578. [DOI] [PubMed] [Google Scholar]
- ROSENBERGER R. F., ELSDEN S. R. The yields of Streptococcus faecalis grown in continuous culture. J Gen Microbiol. 1960 Jun;22:726–739. doi: 10.1099/00221287-22-3-726. [DOI] [PubMed] [Google Scholar]
- Reeve C. D., Carver M. A., Hopper D. J. Stereochemical aspects of the oxidation of 4-ethylphenol by the bacterial enzyme 4-ethylphenol methylenehydroxylase. Biochem J. 1990 Aug 1;269(3):815–819. doi: 10.1042/bj2690815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reeve C. D., Carver M. A., Hopper D. J. The purification and characterization of 4-ethylphenol methylenehydroxylase, a flavocytochrome from Pseudomonas putida JD1. Biochem J. 1989 Oct 15;263(2):431–437. doi: 10.1042/bj2630431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothera A. C. Note on the sodium nitro-prusside reaction for acetone. J Physiol. 1908 Dec 15;37(5-6):491–494. doi: 10.1113/jphysiol.1908.sp001285. [DOI] [PMC free article] [PubMed] [Google Scholar]