Abstract
Zinc resistance in Pseudomonas sp. strain UDG26 was inducible. Induction led to enhanced uptake of the metal. A zinc-sensitive variant (UDG86) took up significantly less metal ion than the resistant one did. The affinity of uninduced and sensitive cells to zinc was less than that of resistant, induced cells. Metal accumulation by induced cells was not inhibited by azide, while 2,4-dinitrophenol and N-N′ -dicyclohexylcarbodiimide enhanced zinc uptake because of inhibition of efflux. Transcription and translation inhibitors drastically reduced zinc accumulation, bringing it to the level found in the sensitive strain. These results suggest the involvement of protein(s) in zinc resistance.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bucheder F., Broda E. Energy-dependent zinc transport by escherichia coli. Eur J Biochem. 1974 Jun 15;45(2):555–559. doi: 10.1111/j.1432-1033.1974.tb03581.x. [DOI] [PubMed] [Google Scholar]
- Burke B. E., Pfister R. M. Cadmium transport by a Cd2+-sensitive and a Cd2+-resistant strain of Bacillus subtilis. Can J Microbiol. 1986 Jul;32(7):539–542. doi: 10.1139/m86-100. [DOI] [PubMed] [Google Scholar]
- Failla M. L., Benedict C. D., Weinberg E. D. Accumulation and storage of Zn2+ by Candida utilis. J Gen Microbiol. 1976 May;94(1):23–36. doi: 10.1099/00221287-94-1-23. [DOI] [PubMed] [Google Scholar]
- Higham D. P., Sadler P. J., Scawen M. D. Cadmium-Resistant Pseudomonas putida Synthesizes Novel Cadmium Proteins. Science. 1984 Sep 7;225(4666):1043–1046. doi: 10.1126/science.225.4666.1043. [DOI] [PubMed] [Google Scholar]
- Nies D. H. Resistance to cadmium, cobalt, zinc, and nickel in microbes. Plasmid. 1992 Jan;27(1):17–28. doi: 10.1016/0147-619x(92)90003-s. [DOI] [PubMed] [Google Scholar]
- Nies D. H., Silver S. Metal ion uptake by a plasmid-free metal-sensitive Alcaligenes eutrophus strain. J Bacteriol. 1989 Jul;171(7):4073–4075. doi: 10.1128/jb.171.7.4073-4075.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nies D. H., Silver S. Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus. J Bacteriol. 1989 Feb;171(2):896–900. doi: 10.1128/jb.171.2.896-900.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olafson R. W., Abel K., Sim R. G. Prokaryotic metallothionein: preliminary characterization of a blue-green alga heavy metal-binding protein. Biochem Biophys Res Commun. 1979 Jul 12;89(1):36–43. doi: 10.1016/0006-291x(79)90939-2. [DOI] [PubMed] [Google Scholar]
- Remacle J., Vercheval C. A zinc-binding protein in a metal-resistant strain, Alcaligenes eutrophus CH34. Can J Microbiol. 1991 Nov;37(11):875–877. doi: 10.1139/m91-150. [DOI] [PubMed] [Google Scholar]
- Silver S., Walderhaug M. Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria. Microbiol Rev. 1992 Mar;56(1):195–228. doi: 10.1128/mr.56.1.195-228.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tynecka Z., Gos Z., Zajac J. Energy-dependent efflux of cadmium coded by a plasmid resistance determinant in Staphylococcus aureus. J Bacteriol. 1981 Aug;147(2):313–319. doi: 10.1128/jb.147.2.313-319.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tynecka Z., Gos Z., Zajac J. Reduced cadmium transport determined by a resistance plasmid in Staphylococcus aureus. J Bacteriol. 1981 Aug;147(2):305–312. doi: 10.1128/jb.147.2.305-312.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
