Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1994 Jul;60(7):2389–2393. doi: 10.1128/aem.60.7.2389-2393.1994

Purification and characterization of thermostable and nonthermostable 2-haloacid dehalogenases with different stereospecificities from Pseudomonas sp. strain YL.

J Q Liu 1, T Kurihara 1, A K Hasan 1, V Nardi-Dei 1, H Koshikawa 1, N Esaki 1, K Soda 1
PMCID: PMC201661  PMID: 8074519

Abstract

Two novel hydrolytic dehalogenases, thermostable L-2-haloacid dehalogenase (L-DEX) inducibly synthesized by 2-chloropropionate (2-CPA) and nonthermostable DL-2-haloacid dehalogenase (DL-DEX) induced by 2-chloroacrylate, were purified to homogeneity from Pseudomonas sp. strain YL. DL-DEX consisted of a monomer with a molecular weight of about 36,000 and catalyzed the dehalogenation of L and D isomers of 2-CPA to produce D- and L-lactates, respectively. It acted on 2-haloalkanoic acids with a carbon chain length of 2 to 4. The maximum activity on DL-2-CPA was found at pH 10.5 and 45 degrees C. L-DEX, composed of two subunits with identical molecular weights of 27,000, catalyzes the dehalogenation of L-2-haloalkanoic acids to produce the corresponding D-2-hydroxyalkanoic acids. The enzyme acts not only on short-carbon-chain 2-haloacids such as monochloroacetate and monoiodoacetate in aqueous solution but also on long-carbon-chain 2-haloacids such as 2-bromohexadecanoate in n-heptane. L-DEX is thermostable: it retained its full activity upon heating at 60 degrees C for 30 min. The pH and temperature optima for dehalogenation of L-2-CPA were 9.5 and 65 degrees C, respectively. L-DEX was strongly inhibited by modification of carboxyl groups with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and Woodward reagent K, but DL-DEX was not.

Full text

PDF
2389

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chiou S. H., Wang K. T. Simplified protein hydrolysis with methanesulphonic acid at elevated temperature for the complete amino acid analysis of proteins. J Chromatogr. 1988 Sep 16;448(3):404–410. doi: 10.1016/s0021-9673(01)84603-3. [DOI] [PubMed] [Google Scholar]
  2. Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967 Jul;6(7):1948–1954. doi: 10.1021/bi00859a010. [DOI] [PubMed] [Google Scholar]
  3. Goldman P., Milne G. W., Keister D. B. Carbon-halogen bond cleavage. 3. Studies on bacterial halidohrolases. J Biol Chem. 1968 Jan 25;243(2):428–434. [PubMed] [Google Scholar]
  4. Jones D. H., Barth P. T., Byrom D., Thomas C. M. Nucleotide sequence of the structural gene encoding a 2-haloalkanoic acid dehalogenase of Pseudomonas putida strain AJ1 and purification of the encoded protein. J Gen Microbiol. 1992 Apr;138(4):675–683. doi: 10.1099/00221287-138-4-675. [DOI] [PubMed] [Google Scholar]
  5. Kawasaki H., Toyama T., Maeda T., Nishino H., Tonomura K. Cloning and sequence analysis of a plasmid-encoded 2-haloacid dehalogenase gene from Pseudomonas putida No. 109. Biosci Biotechnol Biochem. 1994 Jan;58(1):160–163. doi: 10.1271/bbb.58.160. [DOI] [PubMed] [Google Scholar]
  6. Kawasaki H., Tsuda K., Matsushita I., Tonomura K. Lack of homology between two haloacetate dehalogenase genes encoded on a plasmid from Moraxella sp. strain B. J Gen Microbiol. 1992 Jul;138(7):1317–1323. doi: 10.1099/00221287-138-7-1317. [DOI] [PubMed] [Google Scholar]
  7. Little M., Williams P. A. A bacterial halidohydrolase. Its purification, some properties and its modification by specific amino acid reagents. Eur J Biochem. 1971 Jul 15;21(1):99–109. doi: 10.1111/j.1432-1033.1971.tb01445.x. [DOI] [PubMed] [Google Scholar]
  8. Motosugi K., Esaki N., Soda K. Purification and properties of a new enzyme, DL-2-haloacid dehalogenase, from Pseudomonas sp. J Bacteriol. 1982 May;150(2):522–527. doi: 10.1128/jb.150.2.522-527.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ohshima T., Ishida M. A large-scale preparative electrophoretic method for the purification of pyridine nucleotide-linked dehydrogenases. Protein Expr Purif. 1992 Apr;3(2):121–125. [PubMed] [Google Scholar]
  10. Schneider B., Müller R., Frank R., Lingens F. Complete nucleotide sequences and comparison of the structural genes of two 2-haloalkanoic acid dehalogenases from Pseudomonas sp. strain CBS3. J Bacteriol. 1991 Feb;173(4):1530–1535. doi: 10.1128/jb.173.4.1530-1535.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Smith J. M., Harrison K., Colby J. Purification and characterization of D-2-haloacid dehalogenase from Pseudomonas putida strain AJ1/23. J Gen Microbiol. 1990 May;136(5):881–886. doi: 10.1099/00221287-136-5-881. [DOI] [PubMed] [Google Scholar]
  12. Verschueren K. H., Seljée F., Rozeboom H. J., Kalk K. H., Dijkstra B. W. Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature. 1993 Jun 24;363(6431):693–698. doi: 10.1038/363693a0. [DOI] [PubMed] [Google Scholar]
  13. Weightman A. J., Weightman A. L., Slater J. H. Stereospecificity of 2-monochloropropionate dehalogenation by the two dehalogenases of Pseudomonas putida PP3: evidence for two different dehalogenation mechanisms. J Gen Microbiol. 1982 Aug;128(8):1755–1762. doi: 10.1099/00221287-128-8-1755. [DOI] [PubMed] [Google Scholar]
  14. van der Ploeg J., van Hall G., Janssen D. B. Characterization of the haloacid dehalogenase from Xanthobacter autotrophicus GJ10 and sequencing of the dhlB gene. J Bacteriol. 1991 Dec;173(24):7925–7933. doi: 10.1128/jb.173.24.7925-7933.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES