Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1994 Jul;60(7):2609–2615. doi: 10.1128/aem.60.7.2609-2615.1994

Purification, Characterization, and Substrate Specificities of Multiple Xylanases from Streptomyces sp. Strain B-12-2

Graziano Elegir 1, George Szakács 2, Thomas W Jeffries 3,*
PMCID: PMC201691  PMID: 16349337

Abstract

The endoxylanase complex from Streptomyces sp. strain B-12-2 was purified and characterized. The organism forms five distinct xylanases in the absence of significant cellulase activity when grown on oat spelt xylan. This is the largest number of endoxylanases yet reported for a streptomycete. On the basis of their physiochemical characteristics, they can be divided into two groups: the first group (xyl 1a and xyl 1b) consists of low-molecular-mass (26.4 and 23.8 kDa, respectively) neutral- to high-pI (6.5 and 8.3, respectively) endoxylanases. Group 1 endoxylanases are unable to hydrolyze aryl-β-d-cellobioside, have low levels of activity against xylotetraose (X4) and limited activity against xylopentaose, produce little or no xylose, and form products having a higher degree of polymerization with complex substrates. These enzymes apparently carry out transglycosylation. The second group (xyl 2, xyl 3, and xyl 4) consists of high-molecular-mass (36.2, 36.2, and 40.5 kDa, respectively), low-pI (5.4, 5.0, and 4.8, respectively) xylanases. Group 2 endoxylanases are able to hydrolyze aryl-β-d-cellobioside, show higher levels of activity against X4, and hydrolyze xylopentaose completely with the formation of xylobiose and xylotriose plus limited amounts of X4 and xylose. The enzymes display intergroup synergism when acting on kraft pulp. Despite intragroup similarities, each enzyme exhibited a unique action pattern and physiochemical characteristic. xyl 2 was highly glycosylated, and xyl 1b (but no other enzyme) was completely inhibited by p-hydroxymercuribenzoate.

Full text

PDF
2609

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bensadoun A., Weinstein D. Assay of proteins in the presence of interfering materials. Anal Biochem. 1976 Jan;70(1):241–250. doi: 10.1016/s0003-2697(76)80064-4. [DOI] [PubMed] [Google Scholar]
  2. Biely P., Kluepfel D., Morosoli R., Shareck F. Mode of action of three endo-beta-1,4-xylanases of Streptomyces lividans. Biochim Biophys Acta. 1993 Mar 26;1162(3):246–254. doi: 10.1016/0167-4838(93)90288-3. [DOI] [PubMed] [Google Scholar]
  3. Biely P., Markovic O., Mislovicová D. Sensitive detection of endo-1,4-beta-glucanases and endo-1,4-beta-xylanases in gels. Anal Biochem. 1985 Jan;144(1):147–151. doi: 10.1016/0003-2697(85)90096-x. [DOI] [PubMed] [Google Scholar]
  4. Deshpande V., Hinge J., Rao M. Chemical modification of xylanases: evidence for essential tryptophan and cysteine residues at the active site. Biochim Biophys Acta. 1990 Nov 15;1041(2):172–177. doi: 10.1016/0167-4838(90)90062-k. [DOI] [PubMed] [Google Scholar]
  5. Gilkes N. R., Henrissat B., Kilburn D. G., Miller R. C., Jr, Warren R. A. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev. 1991 Jun;55(2):303–315. doi: 10.1128/mr.55.2.303-315.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Grabski A. C., Forrester I. T., Patel R., Jeffries T. W. Characterization and N-terminal amino acid sequences of beta-(1-4)endoxylanases from Streptomyces roseiscleroticus: purification incorporating a bioprocessing agent. Protein Expr Purif. 1993 Apr;4(2):120–129. doi: 10.1006/prep.1993.1018. [DOI] [PubMed] [Google Scholar]
  7. Grabski A. C., Jeffries T. W. Production, Purification, and Characterization of beta-(1-4)-Endoxylanase of Streptomyces roseiscleroticus. Appl Environ Microbiol. 1991 Apr;57(4):987–992. doi: 10.1128/aem.57.4.987-992.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hatfield R. D., Helm R. F., Ralph J. Synthesis of methyl 5-O-trans-feruloyl-alpha-L-arabinofuranoside and its use as a substrate to assess feruloyl esterase activity. Anal Biochem. 1991 Apr;194(1):25–33. doi: 10.1016/0003-2697(91)90146-k. [DOI] [PubMed] [Google Scholar]
  9. Holtz C., Kaspari H., Klemme J. H. Production and properties of xylanases from thermophilic actinomycetes. Antonie Van Leeuwenhoek. 1991 Jan;59(1):1–7. doi: 10.1007/BF00582112. [DOI] [PubMed] [Google Scholar]
  10. Khasin A., Alchanati I., Shoham Y. Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl Environ Microbiol. 1993 Jun;59(6):1725–1730. doi: 10.1128/aem.59.6.1725-1730.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Lim K. B., Doraisingham S., Thirumoorthy T., Lee C. T., Ling A. E., Tan T. Foscarnet (phosphonoformate sodium) in the treatment of recurrent male genital herpes. Ann Acad Med Singapore. 1986 Oct;15(4):617–622. [PubMed] [Google Scholar]
  13. Mackenzie C. R., Bilous D., Schneider H., Johnson K. G. Induction of Cellulolytic and Xylanolytic Enzyme Systems in Streptomyces spp. Appl Environ Microbiol. 1987 Dec;53(12):2835–2839. doi: 10.1128/aem.53.12.2835-2839.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Morosoli R., Bertrand J. L., Mondou F., Shareck F., Kluepfel D. Purification and properties of a xylanase from Streptomyces lividans. Biochem J. 1986 Nov 1;239(3):587–592. doi: 10.1042/bj2390587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nakamura S., Wakabayashi K., Nakai R., Aono R., Horikoshi K. Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1. Appl Environ Microbiol. 1993 Jul;59(7):2311–2316. doi: 10.1128/aem.59.7.2311-2316.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. SMOGYI M. Notes on sugar determination. J Biol Chem. 1952 Mar;195(1):19–23. [PubMed] [Google Scholar]
  17. Simpson H. D., Haufler U. R., Daniel R. M. An extremely thermostable xylanase from the thermophilic eubacterium Thermotoga. Biochem J. 1991 Jul 15;277(Pt 2):413–417. doi: 10.1042/bj2770413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tuohy M. G., Puls J., Claeyssens M., Vrsanská M., Coughlan M. P. The xylan-degrading enzyme system of Talaromyces emersonii: novel enzymes with activity against aryl beta-D-xylosides and unsubstituted xylans. Biochem J. 1993 Mar 1;290(Pt 2):515–523. doi: 10.1042/bj2900515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wong K. K., Tan L. U., Saddler J. N. Multiplicity of beta-1,4-xylanase in microorganisms: functions and applications. Microbiol Rev. 1988 Sep;52(3):305–317. doi: 10.1128/mr.52.3.305-317.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES