Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1994 Aug;60(8):2911–2915. doi: 10.1128/aem.60.8.2911-2915.1994

Purification and characterization of thermostable beta-N-acetylhexosaminidase of Bacillus stearothermophilus CH-4 isolated from chitin-containing compost.

K Sakai 1, M Narihara 1, Y Kasama 1, M Wakayama 1, M Moriguchi 1
PMCID: PMC201742  PMID: 8085829

Abstract

Thermostable exochitinase was purified to homogeneity from the culture fluid of Bacillus stearothermophilus CH-4, which was isolated from agricultural compost containing shrimp and crabs. The enzyme was a single polypeptide with a molecular mass of 74 kDa, and the N-terminal amino acid sequence was WDKVGVTDLI ISLNIPEADAVVVGMTLQLQALHLY. The enzyme specifically hydrolyzed C-4 beta-anomeric bonding of N-acetylchitooligosaccharides, as well as their p-nitrophenyl (pNP) derivatives. The enzyme also hydrolyzed pNP-beta-N-acetyl-D-galactosaminide (26% of the activity of pNP-beta-N-acetyl-D-glucosaminide). These results indicated that the enzyme is a beta-N-acetylhexosaminidase (EC 3.2.1.52). Kms for acetylchitooligosaccharides were 1 x 10(-4) to 6 x 10(-4) M, while those for the pNP derivatives were 4 x 10(-3) to 8 x 10(-3) M. The optimum temperature of the enzyme was 75 degrees C, and it retained 100 and 28% reactivity after heating at 60 and 80 degrees C, respectively. The enzyme exhibited 15 to 20% activity in a reaction mixture containing 80% organic solvents and maintained 91% of its original activity after exposure to 8 M urea. The optimum and stable pH was around 6.5. Fe2+, Zn2+, and Ca2+ activated the enzyme, but Hg2+ was inhibitory. N-Acetyl-D-glucosamine inhibited the enzyme competitively (Ki = 4.3 x 10(-4) M), whereas N-acetyl-D-galactosamine did not; in contrast, D-glucosamine and D-galactosamine activated it.

Full text

PDF
2911

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dziadik-Turner C., Koga D., Mai M. S., Kramer K. J. Purification and characteristics of two beta-N-acetylhexosaminidases from the tobacco hornworm, Manduca sexta (L.) (Lepidoptera: Sphingidae). Arch Biochem Biophys. 1981 Dec;212(2):546–560. doi: 10.1016/0003-9861(81)90398-2. [DOI] [PubMed] [Google Scholar]
  2. Koga K., Iwamoto Y., Sakamoto H., Hatano K., Sano M., Kato I. Purification and characterization of beta-N-acetylhexosaminidase from Trichoderma harzianum. Agric Biol Chem. 1991 Nov;55(11):2817–2823. [PubMed] [Google Scholar]
  3. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  4. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  5. Myerowitz R., Piekarz R., Neufeld E. F., Shows T. B., Suzuki K. Human beta-hexosaminidase alpha chain: coding sequence and homology with the beta chain. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7830–7834. doi: 10.1073/pnas.82.23.7830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Neote K., Bapat B., Dumbrille-Ross A., Troxel C., Schuster S. M., Mahuran D. J., Gravel R. A. Characterization of the human HEXB gene encoding lysosomal beta-hexosaminidase. Genomics. 1988 Nov;3(4):279–286. doi: 10.1016/0888-7543(88)90116-4. [DOI] [PubMed] [Google Scholar]
  7. PARK J. T., JOHNSON M. J. A submicrodetermination of glucose. J Biol Chem. 1949 Nov;181(1):149–151. [PubMed] [Google Scholar]
  8. REISSIG J. L., STORMINGER J. L., LELOIR L. F. A modified colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem. 1955 Dec;217(2):959–966. [PubMed] [Google Scholar]
  9. Scopes R. K. Measurement of protein by spectrophotometry at 205 nm. Anal Biochem. 1974 May;59(1):277–282. doi: 10.1016/0003-2697(74)90034-7. [DOI] [PubMed] [Google Scholar]
  10. Somerville C. C., Colwell R. R. Sequence analysis of the beta-N-acetylhexosaminidase gene of Vibrio vulnificus: evidence for a common evolutionary origin of hexosaminidases. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6751–6755. doi: 10.1073/pnas.90.14.6751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Soto-Gil R. W., Zyskind J. W. N,N'-diacetylchitobiase of Vibrio harveyi. Primary structure, processing, and evolutionary relationships. J Biol Chem. 1989 Sep 5;264(25):14778–14783. [PubMed] [Google Scholar]
  12. Takayanagi T., Ajisaka K., Takiguchi Y., Shimahara K. Isolation and characterization of thermostable chitinases from Bacillus licheniformis X-7u. Biochim Biophys Acta. 1991 Jul 12;1078(3):404–410. doi: 10.1016/0167-4838(91)90163-t. [DOI] [PubMed] [Google Scholar]
  13. Tsujibo H., Minoura K., Miyamoto K., Endo H., Moriwaki M., Inamori Y. Purification and properties of a thermostable chitinase from Streptomyces thermoviolaceus OPC-520. Appl Environ Microbiol. 1993 Feb;59(2):620–622. doi: 10.1128/aem.59.2.620-622.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Usui T., Hayashi Y., Nanjo F., Ishido Y. Enzymatic synthesis of p-nitrophenyl N,N',N'',N'',N''''-pentaacetyl-beta-chitopentaoside in water-methanol system; significance as a substrate for lysozyme assay. Biochim Biophys Acta. 1988 Mar 23;953(2):179–184. [PubMed] [Google Scholar]
  15. Yamamoto K., Tsuji Y., Matsushita S., Kumagai H., Tochikura T. Purification and Properties of beta-N-Acetylhexosaminidase from Mucor fragilis Grown in Bovine Blood. Appl Environ Microbiol. 1986 May;51(5):1019–1023. doi: 10.1128/aem.51.5.1019-1023.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES