Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1994 Aug;60(8):2944–2948. doi: 10.1128/aem.60.8.2944-2948.1994

Culturability and Expression of Outer Membrane Proteins during Carbon, Nitrogen, or Phosphorus Starvation of Pseudomonas fluorescens DF57 and Pseudomonas putida DF14

Lene Kragelund 1,*, Ole Nybroe 1
PMCID: PMC201747  PMID: 16349359

Abstract

Changes in culturability and outer membrane protein profiles were investigated in Pseudomonas fluorescens DF57 and Pseudomonas putida DF14 during starvation for carbon, nitrogen, and phosphorus. P. fluorescens DF57 remained fully culturable for 4 days in all starvation regimes. The cell mass increased during starvation for nitrogen and phosphorus, indicating the accumulation of storage compounds, whereas it decreased slightly in carbon-starved cells. P. putida DF14 lost culturability during phosphorus starvation, and the mass of phosphate-starved cells did not increase. Analysis of additional P. fluorescens and P. putida strains, however, showed that the ability to preserve culturability during phosphorus starvation was not species but strain dependent. In DF57, an outer membrane protein of 55 kDa appeared during starvation for phosphorus, while another protein of 63 kDa was seen during all starvation conditions. DF14 induced two outer membrane proteins of 28 and 29 kDa during starvation for carbon and nitrogen, but no phosphorus-specific starvation protein could be detected. Therefore, starvation-induced outer membrane proteins do not seem to be conserved among the fluorescent pseudomonads and a unique starvation response might be found in individual strains.

Full text

PDF
2944

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chester I. R., Meadow P. M., Pitt T. L. The relationship between the O-antigenic lipopolysaccharides and serological specificity in strains of Pseudomonas aeruginosa of different O-serotypes. J Gen Microbiol. 1973 Oct;78(2):305–318. doi: 10.1099/00221287-78-2-305. [DOI] [PubMed] [Google Scholar]
  2. Filip C., Fletcher G., Wulff J. L., Earhart C. F. Solubilization of the cytoplasmic membrane of Escherichia coli by the ionic detergent sodium-lauryl sarcosinate. J Bacteriol. 1973 Sep;115(3):717–722. doi: 10.1128/jb.115.3.717-722.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Flärdh K., Cohen P. S., Kjelleberg S. Ribosomes exist in large excess over the apparent demand for protein synthesis during carbon starvation in marine Vibrio sp. strain CCUG 15956. J Bacteriol. 1992 Nov;174(21):6780–6788. doi: 10.1128/jb.174.21.6780-6788.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fomsgaard A., Freudenberg M. A., Galanos C. Modification of the silver staining technique to detect lipopolysaccharide in polyacrylamide gels. J Clin Microbiol. 1990 Dec;28(12):2627–2631. doi: 10.1128/jcm.28.12.2627-2631.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Givskov M., Eberl L., Møller S., Poulsen L. K., Molin S. Responses to nutrient starvation in Pseudomonas putida KT2442: analysis of general cross-protection, cell shape, and macromolecular content. J Bacteriol. 1994 Jan;176(1):7–14. doi: 10.1128/jb.176.1.7-14.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. González I., Martín R., García T., Morales P., Sanz B., Hernández P. E. A sandwich enzyme-linked immunosorbent assay (ELISA) for detection of Pseudomonas fluorescens and related psychrotrophic bacteria in refrigerated milk. J Appl Bacteriol. 1993 Apr;74(4):394–401. doi: 10.1111/j.1365-2672.1993.tb05144.x. [DOI] [PubMed] [Google Scholar]
  7. Groat R. G., Schultz J. E., Zychlinsky E., Bockman A., Matin A. Starvation proteins in Escherichia coli: kinetics of synthesis and role in starvation survival. J Bacteriol. 1986 Nov;168(2):486–493. doi: 10.1128/jb.168.2.486-493.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hancock R. E., Irvin R. T., Costerton J. W., Carey A. M. Pseudomonas aeruginosa outer membrane: peptidoglycan-associated proteins. J Bacteriol. 1981 Jan;145(1):628–631. doi: 10.1128/jb.145.1.628-631.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hancock R. E., Siehnel R., Martin N. Outer membrane proteins of Pseudomonas. Mol Microbiol. 1990 Jul;4(7):1069–1075. doi: 10.1111/j.1365-2958.1990.tb00680.x. [DOI] [PubMed] [Google Scholar]
  10. Hobbie J. E., Daley R. J., Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol. 1977 May;33(5):1225–1228. doi: 10.1128/aem.33.5.1225-1228.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Huisman G. W., de Leeuw O., Eggink G., Witholt B. Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads. Appl Environ Microbiol. 1989 Aug;55(8):1949–1954. doi: 10.1128/aem.55.8.1949-1954.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kramer J. G., Singleton F. L. Variations in rRNA content of marine Vibrio spp. during starvation-survival and recovery. Appl Environ Microbiol. 1992 Jan;58(1):201–207. doi: 10.1128/aem.58.1.201-207.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Labadie J., Desnier I. Selection of cell wall antigens for the rapid detection of bacteria by immunological methods. J Appl Bacteriol. 1992 Mar;72(3):220–226. doi: 10.1111/j.1365-2672.1992.tb01827.x. [DOI] [PubMed] [Google Scholar]
  15. Mazzola M., Cook R. J. Effects of fungal root pathogens on the population dynamics of biocontrol strains of fluorescent pseudomonads in the wheat rhizosphere. Appl Environ Microbiol. 1991 Aug;57(8):2171–2178. doi: 10.1128/aem.57.8.2171-2178.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mutharia L. M., Nicas T. I., Hancock R. E. Outer membrane proteins of Pseudomonas aeruginosa serotype strains. J Infect Dis. 1982 Dec;146(6):770–779. doi: 10.1093/infdis/146.6.770. [DOI] [PubMed] [Google Scholar]
  17. Nyström T., Albertson N., Kjelleberg S. Synthesis of membrane and periplasmic proteins during starvation of a marine Vibrio sp. J Gen Microbiol. 1988 Jun;134(6):1645–1651. doi: 10.1099/00221287-134-6-1645. [DOI] [PubMed] [Google Scholar]
  18. Nyström T., Olsson R. M., Kjelleberg S. Survival, stress resistance, and alterations in protein expression in the marine vibrio sp. strain S14 during starvation for different individual nutrients. Appl Environ Microbiol. 1992 Jan;58(1):55–65. doi: 10.1128/aem.58.1.55-65.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Oliver J. D., Nilsson L., Kjelleberg S. Formation of nonculturable Vibrio vulnificus cells and its relationship to the starvation state. Appl Environ Microbiol. 1991 Sep;57(9):2640–2644. doi: 10.1128/aem.57.9.2640-2644.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Poole K., Parr T. R., Jr, Hancock R. E. Phosphate-selective porins from the outer membranes of fluorescent Pseudomonas sp. Can J Microbiol. 1987 Jan;33(1):63–69. doi: 10.1139/m87-011. [DOI] [PubMed] [Google Scholar]
  21. Ramos-González M. I., Ruiz-Cabello F., Brettar I., Garrido F., Ramos J. L. Tracking genetically engineered bacteria: monoclonal antibodies against surface determinants of the soil bacterium Pseudomonas putida 2440. J Bacteriol. 1992 May;174(9):2978–2985. doi: 10.1128/jb.174.9.2978-2985.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sterkenburg A., Vlegels E., Wouters J. T. Influence of nutrient limitation and growth rate on the outer membrane proteins of Klebsiella aerogenes NCTC 418. J Gen Microbiol. 1984 Sep;130(9):2347–2355. doi: 10.1099/00221287-130-9-2347. [DOI] [PubMed] [Google Scholar]
  23. Wanner U., Egli T. Dynamics of microbial growth and cell composition in batch culture. FEMS Microbiol Rev. 1990 Mar;6(1):19–43. doi: 10.1111/j.1574-6968.1990.tb04084.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES