Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1994 Sep;60(9):3228–3235. doi: 10.1128/aem.60.9.3228-3235.1994

Identification of Whole Fixed Bacterial Cells with Nonradioactive 23S rRNA-Targeted Polynucleotide Probes

Karlheinz Trebesius 1, Rudolf Amann 1,*, Wolfgang Ludwig 1, Klaus Mühlegger 2, Karl-Heinz Schleifer 1
PMCID: PMC201793  PMID: 16349377

Abstract

Polyribonucleotide probes (ca. 200 to 300 nucleotides in length) carrying multiple reporter molecules were produced by in vitro transcription with labeled UTP derivatives (fluorescein-12-UTP, 7-amino-4-methyl-coumarin-3-acetyl-6-UTP, tetramethylrhodamine-6-UTP, or digoxigenin-11-UTP). Despite their length, these molecules penetrated into whole fixed gram-negative cells and hybridized specifically to their target sites on the 23S rRNA. Fluorescence intensities were quantified for target and nontarget cells by the combination of a charge-coupled device videocamera and an image-processing system. Polyribonucleotide probes confer up to 26 times more fluorescence to target cells than oligonucleotide probes do. Probe sensitivity and specificity were strongly influenced by the stringency of hybridization. The use of differently labeled probes allowed the simultaneous detection of three populations. Identification of introduced test organisms in activated-sludge samples proved the applicability of this method for the in situ identification of microorganisms in complex microbial communities.

Full text

PDF
3228

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol. 1990 Jun;56(6):1919–1925. doi: 10.1128/aem.56.6.1919-1925.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amann R. I., Krumholz L., Stahl D. A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol. 1990 Feb;172(2):762–770. doi: 10.1128/jb.172.2.762-770.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amann R. I., Stromley J., Devereux R., Key R., Stahl D. A. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl Environ Microbiol. 1992 Feb;58(2):614–623. doi: 10.1128/aem.58.2.614-623.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Amann R. I., Zarda B., Stahl D. A., Schleifer K. H. Identification of individual prokaryotic cells by using enzyme-labeled, rRNA-targeted oligonucleotide probes. Appl Environ Microbiol. 1992 Sep;58(9):3007–3011. doi: 10.1128/aem.58.9.3007-3011.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Amann R., Springer N., Ludwig W., Görtz H. D., Schleifer K. H. Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature. 1991 May 9;351(6322):161–164. doi: 10.1038/351161a0. [DOI] [PubMed] [Google Scholar]
  6. Bauman J. G., Bentvelzen P. Flow cytometric detection of ribosomal RNA in suspended cells by fluorescent in situ hybridization. Cytometry. 1988 Nov;9(6):517–524. doi: 10.1002/cyto.990090602. [DOI] [PubMed] [Google Scholar]
  7. DeLong E. F., Wickham G. S., Pace N. R. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science. 1989 Mar 10;243(4896):1360–1363. doi: 10.1126/science.2466341. [DOI] [PubMed] [Google Scholar]
  8. Delong E. F., Frankel R. B., Bazylinski D. A. Multiple evolutionary origins of magnetotaxis in bacteria. Science. 1993 Feb 5;259(5096):803–806. doi: 10.1126/science.259.5096.803. [DOI] [PubMed] [Google Scholar]
  9. Distel D. L., DeLong E. F., Waterbury J. B. Phylogenetic characterization and in situ localization of the bacterial symbiont of shipworms (Teredinidae: Bivalvia) by using 16S rRNA sequence analysis and oligodeoxynucleotide probe hybridization. Appl Environ Microbiol. 1991 Aug;57(8):2376–2382. doi: 10.1128/aem.57.8.2376-2382.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hahn D., Amann R. I., Ludwig W., Akkermans A. D., Schleifer K. H. Detection of micro-organisms in soil after in situ hybridization with rRNA-targeted, fluorescently labelled oligonucleotides. J Gen Microbiol. 1992 May;138(5):879–887. doi: 10.1099/00221287-138-5-879. [DOI] [PubMed] [Google Scholar]
  11. Hicks R. E., Amann R. I., Stahl D. A. Dual staining of natural bacterioplankton with 4',6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rRNA sequences. Appl Environ Microbiol. 1992 Jul;58(7):2158–2163. doi: 10.1128/aem.58.7.2158-2163.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Höltke H. J., Kessler C. Non-radioactive labeling of RNA transcripts in vitro with the hapten digoxigenin (DIG); hybridization and ELISA-based detection. Nucleic Acids Res. 1990 Oct 11;18(19):5843–5851. doi: 10.1093/nar/18.19.5843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Höpfl P., Ludwig W., Schleifer K. H., Larsen N. The 23S ribosomal RNA higher-order structure of Pseudomonas cepacia and other prokaryotes. Eur J Biochem. 1989 Nov 6;185(2):355–364. doi: 10.1111/j.1432-1033.1989.tb15123.x. [DOI] [PubMed] [Google Scholar]
  14. Khalfan H., Abuknesha R., Rand-Weaver M., Price R. G., Robinson D. Aminomethyl coumarin acetic acid: a new fluorescent labelling agent for proteins. Histochem J. 1986 Sep;18(9):497–499. doi: 10.1007/BF01675617. [DOI] [PubMed] [Google Scholar]
  15. Ludwig W., Dorn S., Springer N., Kirchhof G., Schleifer K. H. PCR-based preparation of 23S rRNA-targeted group-specific polynucleotide probes. Appl Environ Microbiol. 1994 Sep;60(9):3236–3244. doi: 10.1128/aem.60.9.3236-3244.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Manz W., Szewzyk U., Ericsson P., Amann R., Schleifer K. H., Stenström T. A. In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes. Appl Environ Microbiol. 1993 Jul;59(7):2293–2298. doi: 10.1128/aem.59.7.2293-2298.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Springer N., Ludwig W., Drozański W., Amann R., Schleifer K. H. The phylogenetic status of Sarcobium lyticum, an obligate intracellular bacterial parasite of small amoebae. FEMS Microbiol Lett. 1992 Sep 15;75(2-3):199–202. doi: 10.1016/0378-1097(92)90403-b. [DOI] [PubMed] [Google Scholar]
  18. Wagner M., Amann R., Lemmer H., Schleifer K. H. Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl Environ Microbiol. 1993 May;59(5):1520–1525. doi: 10.1128/aem.59.5.1520-1525.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wallner G., Amann R., Beisker W. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry. 1993;14(2):136–143. doi: 10.1002/cyto.990140205. [DOI] [PubMed] [Google Scholar]
  20. Zarda B., Amann R., Wallner G., Schleifer K. H. Identification of single bacterial cells using digoxigenin-labelled, rRNA-targeted oligonucleotides. J Gen Microbiol. 1991 Dec;137(12):2823–2830. doi: 10.1099/00221287-137-12-2823. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES