Abstract
Unlike resident peritoneal macrophages, which contain peroxidase in the rough endoplasmic reticulum (RER) and perinuclear cisternae (PN), macrophages elicited into the rabbit peritoneal cavity by various stimulants lack the enzyme. Since we had previously found that such peroxidase reactivity rapidly appears in the RER and PN of blood monocytes after surface adherence in vitro, we wondered whether the enzyme could be similarly produced in elicited macrophages by adherence. Cells from peritoneal exudates (96 hours after endotoxin injection) were harvested, suspended in culture medium, and allowed to adhere to fibrin-coated or plastic surfaces. Following culture for various intervals, they were fixed, incubated for peroxidase, and examined by electron microscopy. We observed that these elicited cells, which initially contained no cytochemically detectable peroxidase, acquired peroxidatic activity in the RER and PN within 2 hours after adherence in culture. Thus macrophages, like blood monocytes, may rapidly acquire peroxidase reactivity as a consequence of plasma membrane: external surface interaction. In view of this finding, it would seem unwise to use peroxidase localization as the basis for advocating the existence of two separate lines of peritoneal macrophages, as has been proposed by previous investigators.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bainton D. F., Ullyot J. L., Farquhar M. G. The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. J Exp Med. 1971 Oct 1;134(4):907–934. doi: 10.1084/jem.134.4.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bodel P. T., Nichols B. A., Bainton D. F. Appearance of peroxidase reactivity within the rough endoplasmic reticulum of blood monocytes after surface adherence. J Exp Med. 1977 Feb 1;145(2):264–274. doi: 10.1084/jem.145.2.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bodel P. Studies on the mechanism of endogenous pyrogen production. III. Human blood monocytes. J Exp Med. 1974 Oct 1;140(4):954–965. doi: 10.1084/jem.140.4.954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cotran R. S., Litt M. Ultrastructural localization of horseradish peroxidase and endogenous peroxidase activity in guinea pig peritoneal macrophages. J Immunol. 1970 Dec;105(6):1536–1546. [PubMed] [Google Scholar]
- Daems W. T., Brederoo P. Electron microscopical studies on the structure, phagocytic properties, and peroxidatic activity of resident and exudate peritoneal macrophages in the guinea pig. Z Zellforsch Mikrosk Anat. 1973 Nov 5;144(2):247–297. doi: 10.1007/BF00307305. [DOI] [PubMed] [Google Scholar]
- Dvorak A. M., Hammond M. E., Dvorak H. F., Karnovsky M. J. Loss of cell surface material from peritoneal exudate cells associated with lymphocyte-mediated inhibition of macrophage migration from capillary tubes. Lab Invest. 1972 Dec;27(6):561–574. [PubMed] [Google Scholar]
- Lepper A. W., Hart P. D. Peroxidase staining in elicited and nonelicited mononuclear peritoneal cells from BCG-sensitized and nonsensitized mice. Infect Immun. 1976 Aug;14(2):522–526. doi: 10.1128/iai.14.2.522-526.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nichols B. A., Bainton D. F., Farquhar M. G. Differentiation of monocytes. Origin, nature, and fate of their azurophil granules. J Cell Biol. 1971 Aug;50(2):498–515. doi: 10.1083/jcb.50.2.498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tice L. W. Effects of hypophysectomy and TSH replacement on the ultrastructural localization of thyroperoxidase. Endocrinology. 1974 Aug;95(2):421–433. doi: 10.1210/endo-95-2-421. [DOI] [PubMed] [Google Scholar]
- van Furth R. Origin and kinetics of monocytes and macrophages. Semin Hematol. 1970 Apr;7(2):125–141. [PubMed] [Google Scholar]



