Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1994 Oct;60(10):3597–3601. doi: 10.1128/aem.60.10.3597-3601.1994

Metabolism of Pyrene by the Basidiomycete Crinipellis stipitaria and Identification of Pyrenequinones and Their Hydroxylated Precursors in Strain JK375

Michael Lambert 1, Stefan Kremer 1,*, Olov Sterner 2, Heidrun Anke 1
PMCID: PMC201861  PMID: 16349406

Abstract

The metabolism of pyrene, a polycyclic aromatic hydrocarbon, by submerged cultures of the basidiomycete Crinipellis stipitaria was studied. After incubation for 68 h at 25°C in a 20-liter fermentor with complex medium and 20 mg of pyrene per liter, five metabolites were detected. The compounds were isolated by preparative high-performance liquid chromatography on RP18 and DIOL gels. By UV, infrared, and 1H nuclear magnetic resonance spectroscopy and mass spectrometry, 1-hydroxypyrene, 1,6-dihydroxypyrene, 1,8-dihydroxypyrene, 1,6-pyrenequinone, and 1,8-pyrenequinone were identified. 1,6- and 1,8-dihydroxypyrene were obtained from fungal cultures for the first time. The formation of these metabolites was confirmed by investigations with [4,5,9,10-14C]pyrene.

Full text

PDF
3597

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boldrin B., Tiehm A., Fritzsche C. Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp. Appl Environ Microbiol. 1993 Jun;59(6):1927–1930. doi: 10.1128/aem.59.6.1927-1930.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cerniglia C. E., Kelly D. W., Freeman J. P., Miller D. W. Microbial metabolism of pyrene. Chem Biol Interact. 1986 Feb;57(2):203–216. doi: 10.1016/0009-2797(86)90038-4. [DOI] [PubMed] [Google Scholar]
  3. Foght J. M., Westlake D. W. Degradation of polycyclic aromatic hydrocarbons and aromatic heterocycles by a Pseudomonas species. Can J Microbiol. 1988 Oct;34(10):1135–1141. doi: 10.1139/m88-200. [DOI] [PubMed] [Google Scholar]
  4. Gibson D. T., Mahadevan V., Jerina D. M., Yogi H., Yeh H. J. Oxidation of the carcinogens benzo [a] pyrene and benzo [a] anthracene to dihydrodiols by a bacterium. Science. 1975 Jul 25;189(4199):295–297. doi: 10.1126/science.1145203. [DOI] [PubMed] [Google Scholar]
  5. Hammel K. E., Kalyanaraman B., Kirk T. K. Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem. 1986 Dec 25;261(36):16948–16952. [PubMed] [Google Scholar]
  6. Heitkamp M. A., Franklin W., Cerniglia C. E. Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium. Appl Environ Microbiol. 1988 Oct;54(10):2549–2555. doi: 10.1128/aem.54.10.2549-2555.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Heitkamp M. A., Freeman J. P., Miller D. W., Cerniglia C. E. Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products. Appl Environ Microbiol. 1988 Oct;54(10):2556–2565. doi: 10.1128/aem.54.10.2556-2565.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Herbes S. E. Rates of microbial transformation of polycyclic aromatic hydrocarbons in water and sediments in the vicinity of a coal-coking wastewater discharge. Appl Environ Microbiol. 1981 Jan;41(1):20–28. doi: 10.1128/aem.41.1.20-28.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jacob J., Grimmer G., Raab G., Schmoldt A. The metabolism of pyrene by rat liver microsomes and the influence of various mono-oxygenase inducers. Xenobiotica. 1982 Jan;12(1):45–53. doi: 10.3109/00498258209052453. [DOI] [PubMed] [Google Scholar]
  10. Kelley I., Freeman J. P., Evans F. E., Cerniglia C. E. Identification of metabolites from the degradation of fluoranthene by Mycobacterium sp. strain PYR-1. Appl Environ Microbiol. 1993 Mar;59(3):800–806. doi: 10.1128/aem.59.3.800-806.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kupka J., Anke T., Oberwinkler F., Schramm G., Steglich W. Antibiotics from basidiomycetes. VII. Crinipellin, a new antibiotic from the basidiomycetous fungus Crinipellis stipitaria (Fr.) Pat. J Antibiot (Tokyo) 1979 Feb;32(2):130–135. doi: 10.7164/antibiotics.32.130. [DOI] [PubMed] [Google Scholar]
  12. Lange B., Kremer S., Sterner O., Anke H. Pyrene Metabolism in Crinipellis stipitaria: Identification of trans-4,5-Dihydro-4,5-Dihydroxypyrene and 1-Pyrenylsulfate in Strain JK364. Appl Environ Microbiol. 1994 Oct;60(10):3602–3607. doi: 10.1128/aem.60.10.3602-3607.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mortelmans K., Haworth S., Lawlor T., Speck W., Tainer B., Zeiger E. Salmonella mutagenicity tests: II. Results from the testing of 270 chemicals. Environ Mutagen. 1986;8 (Suppl 7):1–119. [PubMed] [Google Scholar]
  14. Phillips D. H. Fifty years of benzo(a)pyrene. Nature. 1983 Jun 9;303(5917):468–472. doi: 10.1038/303468a0. [DOI] [PubMed] [Google Scholar]
  15. Pothuluri J. V., Heflich R. H., Fu P. P., Cerniglia C. E. Fungal metabolism and detoxification of fluoranthene. Appl Environ Microbiol. 1992 Mar;58(3):937–941. doi: 10.1128/aem.58.3.937-941.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Weissenfels W. D., Beyer M., Klein J. Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures. Appl Microbiol Biotechnol. 1990 Jan;32(4):479–484. doi: 10.1007/BF00903787. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES