Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1994 Oct;60(10):3774–3780. doi: 10.1128/aem.60.10.3774-3780.1994

Production, Purification, and Properties of a Thermostable β-Glucosidase from a Color Variant Strain of Aureobasidium pullulans

Badal C Saha 1,†,*, Shelby N Freer 1, Rodney J Bothast 1
PMCID: PMC201886  PMID: 16349415

Abstract

A color variant strain of Aureobasidium pullulans (NRRL Y-12974) produced β-glucosidase activity when grown in liquid culture on a variety of carbon sources, such as cellobiose, xylose, arabinose, lactose, sucrose, maltose, glucose, xylitol, xylan, cellulose, starch, and pullulan. An extracellular β-glucosidase was purified 129-fold to homogeneity from the cell-free culture broth of the organism grown on corn bran. The purification protocol included ammonium sulfate treatment, CM Bio-Gel A agarose column chromatography, and gel filtrations on Bio-Gel A-0.5m and Sephacryl S-200. The β-glucosidase was a glycoprotein with native molecular weight of 340,000 and was composed of two subunits with molecular weights of about 165,000. The enzyme displayed optimal activity at 75°C and pH 4.5 and had a specific activity of 315 μmol · min-1 · mg of protein-1 under these conditions. The purified β-glucosidase was active against p-nitrophenyl-β-d-glucoside, cellobiose, cellotriose, cellotetraose, cellopentaose, cellohexaose, and celloheptaose, with Km values of 1.17, 1.00, 0.34, 0.36, 0.64, 0.68, and 1.65 mM, respectively. The enzyme activity was competitively inhibited by glucose (Ki = 5.65 mM), while fructose, arabinose, galactose, mannose, and xylose (each at 56 mM) and sucrose and lactose (each at 29 mM) were not inhibitory. The enzyme did not require a metal ion for activity, and its activity was not affected by p-chloromercuribenzoate (0.2 mM), EDTA (10 mM), or dithiothreitol (10 mM). Ethanol (7.5%, vol/vol) stimulated the initial enzyme activity by 15%. Glucose production was enhanced by 7.9% when microcrystalline cellulose (2%, wt/vol) was treated for 48 h with a commercial cellulase preparation (5 U/ml) that was supplemented with the purified β-glucosidase (0.21 U/ml) from A. pullulans.

Full text

PDF
3774

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cotta M. A. Amylolytic activity of selected species of ruminal bacteria. Appl Environ Microbiol. 1988 Mar;54(3):772–776. doi: 10.1128/aem.54.3.772-776.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Drider D., Pommares P., Chemardin P., Arnaud A., Galzy P. Purification and properties of the endocellular beta-glucosidase of Candida cacaoi Buckley and Van Uden CBS 2020. J Appl Bacteriol. 1993 Apr;74(4):473–479. doi: 10.1111/j.1365-2672.1993.tb05156.x. [DOI] [PubMed] [Google Scholar]
  4. Freer S. N. Purification and characterization of the extracellular beta-glucosidase produced by Candida wickerhamii. Arch Biochem Biophys. 1985 Dec;243(2):515–522. doi: 10.1016/0003-9861(85)90528-4. [DOI] [PubMed] [Google Scholar]
  5. Kadam S. K., Demain A. L. Addition of cloned beta-glucosidase enhances the degradation of crystalline cellulose by the Clostridium thermocellum cellulose complex. Biochem Biophys Res Commun. 1989 Jun 15;161(2):706–711. doi: 10.1016/0006-291x(89)92657-0. [DOI] [PubMed] [Google Scholar]
  6. Kengen S. W., Luesink E. J., Stams A. J., Zehnder A. J. Purification and characterization of an extremely thermostable beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur J Biochem. 1993 Apr 1;213(1):305–312. doi: 10.1111/j.1432-1033.1993.tb17763.x. [DOI] [PubMed] [Google Scholar]
  7. Kwon K. S., Kang H. G., Hah Y. C. Purification and characterization of two extracellular beta-glucosidases from Aspergillus nidulans. FEMS Microbiol Lett. 1992 Oct 1;76(1-2):149–153. doi: 10.1016/0378-1097(92)90378-2. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Leathers T. D. Color Variants of Aureobasidium pullulans Overproduce Xylanase with Extremely High Specific Activity. Appl Environ Microbiol. 1986 Nov;52(5):1026–1030. doi: 10.1128/aem.52.5.1026-1030.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lo A. C., Barbier J. R., Willick G. E. Kinetics and specificities of two closely related beta-glucosidases secreted by Schizophyllum commune. Eur J Biochem. 1990 Aug 28;192(1):175–181. doi: 10.1111/j.1432-1033.1990.tb19211.x. [DOI] [PubMed] [Google Scholar]
  12. Paavilainen S., Hellman J., Korpela T. Purification, characterization, gene cloning, and sequencing of a new beta-glucosidase from Bacillus circulans subsp. alkalophilus. Appl Environ Microbiol. 1993 Mar;59(3):927–932. doi: 10.1128/aem.59.3.927-932.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Painbeni E., Valles S., Polaina J., Flors A. Purification and characterization of a Bacillus polymyxa beta-glucosidase expressed in Escherichia coli. J Bacteriol. 1992 May;174(9):3087–3091. doi: 10.1128/jb.174.9.3087-3091.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Patchett M. L., Daniel R. M., Morgan H. W. Purification and properties of a stable beta-glucosidase from an extremely thermophilic anaerobic bacterium. Biochem J. 1987 May 1;243(3):779–787. doi: 10.1042/bj2430779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Plant A. R., Oliver J. E., Patchett M. L., Daniel R. M., Morgan H. W. Stability and substrate specificity of a beta-glucosidase from the thermophilic bacterium Tp8 cloned into Escherichia coli. Arch Biochem Biophys. 1988 Apr;262(1):181–188. doi: 10.1016/0003-9861(88)90180-4. [DOI] [PubMed] [Google Scholar]
  16. Rodionova N. A., Tavobilov I. M., Martinovich L. I., Buachidze T. S., Kvesitadze G. I., Bezborodov A. M. beta-Glucosidases from cellulolytic fungi Aspergillus terreus, Geotrichum candidum, and Trichoderma longibrachiatum as typical glycosidases. Biotechnol Appl Biochem. 1987 Jun;9(3):239–250. doi: 10.1111/j.1470-8744.1987.tb00475.x. [DOI] [PubMed] [Google Scholar]
  17. Ruttersmith L. D., Daniel R. M. Thermostable beta-glucosidase and beta-xylosidase from Thermotoga sp. strain FjSS3-B.1. Biochim Biophys Acta. 1993 Feb 13;1156(2):167–172. doi: 10.1016/0304-4165(93)90132-r. [DOI] [PubMed] [Google Scholar]
  18. Umezurike G. M. The octameric structure of beta-glucosidase from Botryodiplodia theobromae Pat. Biochem J. 1991 May 1;275(Pt 3):721–725. doi: 10.1042/bj2750721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Watanabe T., Sato T., Yoshioka S., Koshijima T., Kuwahara M. Purification and properties of Aspergillus niger beta-glucosidase. Eur J Biochem. 1992 Oct 15;209(2):651–659. doi: 10.1111/j.1432-1033.1992.tb17332.x. [DOI] [PubMed] [Google Scholar]
  20. Wright R. M., Yablonsky M. D., Shalita Z. P., Goyal A. K., Eveleigh D. E. Cloning, characterization, and nucleotide sequence of a gene encoding Microbispora bispora BglB, a thermostable beta-glucosidase expressed in Escherichia coli. Appl Environ Microbiol. 1992 Nov;58(11):3455–3465. doi: 10.1128/aem.58.11.3455-3465.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES