Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1994 Oct;60(10):3809–3814. doi: 10.1128/aem.60.10.3809-3814.1994

Isolation and characterization of Linocin M18, a bacteriocin produced by Brevibacterium linens.

N Valdés-Stauber 1, S Scherer 1
PMCID: PMC201890  PMID: 7986050

Abstract

Brevibacterium linens M18, isolated from red smear cheese, produces a substance that inhibits the growth of Listeria spp. and several coryneform and other gram-positive bacteria. No gram-negative bacteria were inhibited. The substance is heat labile, sensitive to proteolytic enzymes, and stable between pH 3 and 12. High levels of this bacteriocin, named Linocin M18, were obtained in the stationary growth phase. Linocin M18 was purified by ultrafiltration, ultracentrifugation, and gel filtration chromatography. In its native form, it is a proteinaceous aggregate with a high molecular weight. Fractions with Linocin M18 activity contained particles of 20 to 30 nm in diameter. The bacteriocin consists of a single protein subunit with a molecular mass of 31 kDa and an isoelectric point of 4.5 N-terminal sequence analysis yielded Met-Asn-Asn-Leu-Tyr-Arg-Glu-Leu-Ala-Pro-Ile-Pro-Gly-Pro-Ala-Ala-Ala-Glu- Ile. Significant homology with published sequences was lacking.

Full text

PDF
3809

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barefoot S. F., Klaenhammer T. R. Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Appl Environ Microbiol. 1983 Jun;45(6):1808–1815. doi: 10.1128/aem.45.6.1808-1815.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Becker R. J., Cooper A. J., Starzyk M. J. Evidence for association of bacteriocinogenic activity with membrane vesicles of Thermus rubens. Microbios. 1993;73(295):123–133. [PubMed] [Google Scholar]
  3. Degnan A. J., Buyong N., Luchansky J. B. Antilisterial activity of pediocin AcH in model food systems in the presence of an emulsifier or encapsulated within liposomes. Int J Food Microbiol. 1993 Apr;18(2):127–138. doi: 10.1016/0168-1605(93)90217-5. [DOI] [PubMed] [Google Scholar]
  4. Durner K. Anreicherung, Reinigung und Charakterisierung eines Bacteriocins aus Bacillus megaterium 337. Z Allg Mikrobiol. 1970;10(2):93–102. doi: 10.1002/jobm.3630100202. [DOI] [PubMed] [Google Scholar]
  5. Gagliano V. J., Hinsdill R. D. Characterization of a Staphylococcus aureus bacteriocin. J Bacteriol. 1970 Oct;104(1):117–125. doi: 10.1128/jb.104.1.117-125.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jetten A. M., Vogels G. D. Nature and properties of a Staphylococcus epidermidis bacteriocin. J Bacteriol. 1972 Oct;112(1):243–250. doi: 10.1128/jb.112.1.243-250.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Klaenhammer T. R. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 1993 Sep;12(1-3):39–85. doi: 10.1111/j.1574-6976.1993.tb00012.x. [DOI] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Loessner M. J., Krause I. B., Henle T., Scherer S. Structural proteins and DNA characteristics of 14 Listeria typing bacteriophages. J Gen Virol. 1994 Apr;75(Pt 4):701–710. doi: 10.1099/0022-1317-75-4-701. [DOI] [PubMed] [Google Scholar]
  10. Loessner M. J., Scherer S. Elimination of sample diffusion and lateral band spreading in isoelectric focusing employing ready-made immobilized pH gradient gels. Electrophoresis. 1992 Jul;13(7):461–463. doi: 10.1002/elps.1150130197. [DOI] [PubMed] [Google Scholar]
  11. Muriana P. M., Klaenhammer T. R. Purification and partial characterization of lactacin F, a bacteriocin produced by Lactobacillus acidophilus 11088. Appl Environ Microbiol. 1991 Jan;57(1):114–121. doi: 10.1128/aem.57.1.114-121.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ryser E. T., Marth E. H. Behavior of Listeria monocytogenes during manufacture and ripening of brick cheese. J Dairy Sci. 1989 Apr;72(4):838–853. doi: 10.3168/jds.S0022-0302(89)79176-1. [DOI] [PubMed] [Google Scholar]
  13. Schved F., Lalazar A., Henis Y., Juven B. J. Purification, partial characterization and plasmid-linkage of pediocin SJ-1, a bacteriocin produced by Pediococcus acidilactici. J Appl Bacteriol. 1993 Jan;74(1):67–77. doi: 10.1111/j.1365-2672.1993.tb02998.x. [DOI] [PubMed] [Google Scholar]
  14. Tagg J. R., Dajani A. S., Wannamaker L. W. Bacteriocins of gram-positive bacteria. Bacteriol Rev. 1976 Sep;40(3):722–756. doi: 10.1128/br.40.3.722-756.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Valdes-Stauber N., Götz H., Busse M. Antagonistic effect of coryneform bacteria from red smear cheese against Listeria species. Int J Food Microbiol. 1991 Jun;13(2):119–130. doi: 10.1016/0168-1605(91)90054-s. [DOI] [PubMed] [Google Scholar]
  16. Zink R., Loessner M. J. Classification of virulent and temperate bacteriophages of Listeria spp. on the basis of morphology and protein analysis. Appl Environ Microbiol. 1992 Jan;58(1):296–302. doi: 10.1128/aem.58.1.296-302.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES