Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1994 Nov;60(11):3939–3944. doi: 10.1128/aem.60.11.3939-3944.1994

A Structure-Activity Study with Aryl Acylamidases

David T Villarreal 1,*, Ronald F Turco 2, Allan Konopka 1
PMCID: PMC201919  PMID: 16349428

Abstract

We examined the relationship between chemical structure and biodegradability of acylanilide herbicides by using a set of model compounds. Four bacterial isolates (one gram-negative and three gram-positive) that grew on acetanilide were used. These soil isolates cleaved the amide bond of acetanilide via an aryl acylamidase reaction, producing aniline and the organic acid acetate. A series of acetanilide analogs with alkyl substitutions on the nitrogen atom or the aromatic ring were tested for their ability to induce aryl acylamidase activity and act as substrates for the enzyme. The substrate range, in general, was limited to those analogs not disubstituted in the ortho position of the benzene ring or which did not contain an alkyl group on the nitrogen atom. These same N-substituted compounds did not induce enzyme activity either, whereas the ortho-substituted compounds could in some cases.

Full text

PDF
3939

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abril M. A., Michan C., Timmis K. N., Ramos J. L. Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. J Bacteriol. 1989 Dec;171(12):6782–6790. doi: 10.1128/jb.171.12.6782-6790.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alt J., Heymann E., Krisch K. Characterization of an inducible amidase from Pseudomonas acidovorans AE1. Eur J Biochem. 1975 May 6;53(2):357–369. doi: 10.1111/j.1432-1033.1975.tb04076.x. [DOI] [PubMed] [Google Scholar]
  3. Chesters G., Simsiman G. V., Levy J., Alhajjar B. J., Fathulla R. N., Harkin J. M. Environmental fate of alachlor and metolachlor. Rev Environ Contam Toxicol. 1989;110:1–74. doi: 10.1007/978-1-4684-7092-5_1. [DOI] [PubMed] [Google Scholar]
  4. Engelhardt G., Wallnöfer P. R., Plapp R. Purification and properties of an aryl acylamidase of Bacillus sphaericus, catalyzing the hydrolysis of various phenylamide herbicides and fungicides. Appl Microbiol. 1973 Nov;26(5):709–718. doi: 10.1128/am.26.5.709-718.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. George S. T., Varghese M., John L., Balasubramanian A. S. Aryl acylamidase activity in human erythrocyte, plasma and blood in pesticide (organophosphates and carbamates) poisoning. Clin Chim Acta. 1985 Jan 15;145(1):1–7. doi: 10.1016/0009-8981(85)90013-0. [DOI] [PubMed] [Google Scholar]
  6. Grund E., Knorr C., Eichenlaub R. Catabolism of benzoate and monohydroxylated benzoates by Amycolatopsis and Streptomyces spp. Appl Environ Microbiol. 1990 May;56(5):1459–1464. doi: 10.1128/aem.56.5.1459-1464.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hammond P. M., Price C. P., Scawen M. D. Purification and properties of aryl acylamidase from Pseudomonas fluorescens ATCC 39004. Eur J Biochem. 1983 May 16;132(3):651–655. doi: 10.1111/j.1432-1033.1983.tb07413.x. [DOI] [PubMed] [Google Scholar]
  8. Hsiung K. P., Kuan S. S., Guilbault G. G. An inducible amidase from Pseudomonas striata. Biochem Biophys Res Commun. 1975 Oct 27;66(4):1225–1230. doi: 10.1016/0006-291x(75)90489-1. [DOI] [PubMed] [Google Scholar]
  9. Konopka A., Knight D., Turco R. F. Characterization of a Pseudomonas sp. Capable of Aniline Degradation in the Presence of Secondary Carbon Sources. Appl Environ Microbiol. 1989 Feb;55(2):385–389. doi: 10.1128/aem.55.2.385-389.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Lanzilotta R. P., Pramer D. Herbicide transformation. II. Studies with an acylamidase of Fusarium solani. Appl Microbiol. 1970 Feb;19(2):307–313. doi: 10.1128/am.19.2.307-313.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Liu S. Y., Zheng Z., Zhang R., Bollag J. M. Sorption and metabolism of metolachlor by a bacterial community. Appl Environ Microbiol. 1989 Mar;55(3):733–740. doi: 10.1128/aem.55.3.733-740.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Macfarlane G. T., Hay S., Gibson G. R. Influence of mucin on glycosidase, protease and arylamidase activities of human gut bacteria grown in a 3-stage continuous culture system. J Appl Bacteriol. 1989 May;66(5):407–417. doi: 10.1111/j.1365-2672.1989.tb05110.x. [DOI] [PubMed] [Google Scholar]
  14. Novick N. J., Alexander M. Cometabolism of low concentrations of propachlor, alachlor, and cycloate in sewage and lake water. Appl Environ Microbiol. 1985 Apr;49(4):737–743. doi: 10.1128/aem.49.4.737-743.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ramos J. L., Timmis K. N. Experimental evolution of catabolic pathways of bacteria. Microbiol Sci. 1987 Aug;4(8):228–237. [PubMed] [Google Scholar]
  16. Saxena A., Zhang R. W., Bollag J. M. Microorganisms capable of metabolizing the herbicide metolachlor. Appl Environ Microbiol. 1987 Feb;53(2):390–396. doi: 10.1128/aem.53.2.390-396.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sharabi N. E., Bordeleau L. M. Biochemical decomposition of the herbicide N-(3,4-dichlorophenyl)-2-methylpentanamide and related compounds. Appl Microbiol. 1969 Sep;18(3):369–375. doi: 10.1128/am.18.3.369-375.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Steen W. C., Collette T. W. Microbial degradation of seven amides by suspended bacterial populations. Appl Environ Microbiol. 1989 Oct;55(10):2545–2549. doi: 10.1128/aem.55.10.2545-2549.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tiedje J. M., Hagedorn M. J. Degradation of alachlor by a soil fungus, Chaetomium globosum. J Agric Food Chem. 1975 Jan-Feb;23(1):77–81. doi: 10.1021/jf60197a029. [DOI] [PubMed] [Google Scholar]
  20. Vaughan P. A., Hall G. F., Best D. J. Aryl acylamidase from Rhodococcus erythropolis NCIB 12273. Appl Microbiol Biotechnol. 1990 Oct;34(1):42–46. doi: 10.1007/BF00170921. [DOI] [PubMed] [Google Scholar]
  21. Villarreal D. T., Turco R. F., Konopka A. Propachlor degradation by a soil bacterial community. Appl Environ Microbiol. 1991 Aug;57(8):2135–2140. doi: 10.1128/aem.57.8.2135-2140.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wallnöfer P. R., Bader J. Degradation of urea herbicides by cell-free extracts of Bacillus sphaericus. Appl Microbiol. 1970 May;19(5):714–717. doi: 10.1128/am.19.5.714-717.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yoshioka H., Nagasawa T., Yamada H. Purification and characterization of aryl acylamidase from Nocardia globerula. Eur J Biochem. 1991 Jul 1;199(1):17–24. doi: 10.1111/j.1432-1033.1991.tb16086.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES