Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1994 Nov;60(11):4148–4154. doi: 10.1128/aem.60.11.4148-4154.1994

Metabolism of chlorofluorocarbons and polybrominated compounds by Pseudomonas putida G786(pHG-2) via an engineered metabolic pathway.

H G Hur 1, M J Sadowsky 1, L P Wackett 1
PMCID: PMC201949  PMID: 7993096

Abstract

The recombinant bacterium Pseudomonas putida G786(pHG-2) metabolizes pentachloroethane to glyoxylate and carbon dioxide, using cytochrome P-450CAM and toluene dioxygenase to catalyze consecutive reductive and oxidative dehalogenation reactions (L.P. Wackett, M.J. Sadowsky, L.N. Newman, H.-G. Hur, and S. Li, Nature [London] 368:627-629, 1994). The present study investigated metabolism of brominated and chlorofluorocarbon compounds by the recombinant strain. Under anaerobic conditions, P. putida G786(pHG-2) reduced 1,1,2,2-tetrabromoethane, 1,2-dibromo-1,2-dichloroethane, and 1,1,1,2-tetrachloro-2,2-difluoroethane to products bearing fewer halogen substituents. Under aerobic conditions, P. putida G786(pHG-2) oxidized cis- and trans-1,2-dibromoethenes, 1,1-dichloro-2,2-difluoroethene, and 1,2-dichloro-1-fluoroethene. Several compounds were metabolized by sequential reductive and oxidative reactions via the constructed metabolic pathway. For example, 1,1,2,2-tetrabromoethane was reduced by cytochrome P-450CAM to 1,2-dibromoethenes, which were subsequently oxidized by toluene dioxygenase. The same pathway metabolized 1,1,1,2-tetrachloro-2,2-difluoroethane to oxalic acid as one of the final products. The results obtained in this study indicate that P. putida G786(pHG-2) metabolizes polyfluorinated, chlorinated, and brominated compounds and further demonstrates the value of using a knowledge of catabolic enzymes and recombinant DNA technology to construct useful metabolic pathways.

Full text

PDF
4148

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arciero D., Vannelli T., Logan M., Hooper A. B. Degradation of trichloroethylene by the ammonia-oxidizing bacterium Nitrosomonas europaea. Biochem Biophys Res Commun. 1989 Mar 15;159(2):640–643. doi: 10.1016/0006-291x(89)90042-9. [DOI] [PubMed] [Google Scholar]
  2. Castro C. E., Wade R. S., Belser N. O. Biodehalogenation: reactions of cytochrome P-450 with polyhalomethanes. Biochemistry. 1985 Jan 1;24(1):204–210. doi: 10.1021/bi00322a029. [DOI] [PubMed] [Google Scholar]
  3. Fathepure B. Z., Vogel T. M. Complete degradation of polychlorinated hydrocarbons by a two-stage biofilm reactor. Appl Environ Microbiol. 1991 Dec;57(12):3418–3422. doi: 10.1128/aem.57.12.3418-3422.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fox B. G., Borneman J. G., Wackett L. P., Lipscomb J. D. Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry. 1990 Jul 10;29(27):6419–6427. doi: 10.1021/bi00479a013. [DOI] [PubMed] [Google Scholar]
  5. Lefever M. R., Wackett L. P. Oxidation of low molecular weight chloroalkanes by cytochrome P450CAM. Biochem Biophys Res Commun. 1994 May 30;201(1):373–378. doi: 10.1006/bbrc.1994.1711. [DOI] [PubMed] [Google Scholar]
  6. Li S., Wackett L. P. Reductive dehalogenation by cytochrome P450CAM: substrate binding and catalysis. Biochemistry. 1993 Sep 14;32(36):9355–9361. doi: 10.1021/bi00087a014. [DOI] [PubMed] [Google Scholar]
  7. Li S., Wackett L. P. Trichloroethylene oxidation by toluene dioxygenase. Biochem Biophys Res Commun. 1992 May 29;185(1):443–451. doi: 10.1016/s0006-291x(05)81005-8. [DOI] [PubMed] [Google Scholar]
  8. Orser C. S., Dutton J., Lange C., Jablonski P., Xun L., Hargis M. Characterization of a Flavobacterium glutathione S-transferase gene involved reductive dechlorination. J Bacteriol. 1993 May;175(9):2640–2644. doi: 10.1128/jb.175.9.2640-2644.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Orser C. S., Lange C. C., Xun L., Zahrt T. C., Schneider B. J. Cloning, sequence analysis, and expression of the Flavobacterium pentachlorophenol-4-monooxygenase gene in Escherichia coli. J Bacteriol. 1993 Jan;175(2):411–416. doi: 10.1128/jb.175.2.411-416.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]
  11. Vannelli T., Logan M., Arciero D. M., Hooper A. B. Degradation of halogenated aliphatic compounds by the ammonia- oxidizing bacterium Nitrosomonas europaea. Appl Environ Microbiol. 1990 Apr;56(4):1169–1171. doi: 10.1128/aem.56.4.1169-1171.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wackett L. P., Gibson D. T. Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1. Appl Environ Microbiol. 1988 Jul;54(7):1703–1708. doi: 10.1128/aem.54.7.1703-1708.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wackett L. P., Sadowsky M. J., Newman L. M., Hur H. G., Li S. Metabolism of polyhalogenated compounds by a genetically engineered bacterium. Nature. 1994 Apr 14;368(6472):627–629. doi: 10.1038/368627a0. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES