Abstract
Aspergillus sydowii MG49 produces a 30-kDa exosplitting xylobiohydrolase during growth on xylan. A specific chemical modification and substrate protection analysis of purified xylanase provided evidence that tryptophan and carboxy and amino groups are present at the catalytic site of this enzyme. Thermal inactivation of the xylanase occurs because of irreversible polymolecular aggregation, which is slower in the presence of glycerol.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bray M. R., Clarke A. J. Essential carboxy groups in xylanase A. Biochem J. 1990 Aug 15;270(1):91–96. doi: 10.1042/bj2700091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capalash N., Sharma P., Gupta K. G. Use of a modified cupric acetate method for the detection and quantitation of xylanolytic activities: a comparative study with the congo red method. Lett Appl Microbiol. 1990 Mar;10(3):151–154. doi: 10.1111/j.1472-765x.1990.tb00103.x. [DOI] [PubMed] [Google Scholar]
- Dominguez J. M., Acebal C., Jimenez J., de la Mata I., Macarron R., Castillon M. P. Mechanisms of thermoinactivation of endoglucanase I from Trichoderma reesei QM 9414. Biochem J. 1992 Oct 15;287(Pt 2):583–588. doi: 10.1042/bj2870583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gekko K., Timasheff S. N. Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures. Biochemistry. 1981 Aug 4;20(16):4667–4676. doi: 10.1021/bi00519a023. [DOI] [PubMed] [Google Scholar]
- Ghosh M., Nanda G. Thermostability of beta-xylosidase from Aspergillus sydowii MG49. FEBS Lett. 1993 Sep 20;330(3):275–278. doi: 10.1016/0014-5793(93)80887-z. [DOI] [PubMed] [Google Scholar]
- Gorbacheva I. V., Rodionova N. A. Studies on xylan degrading enzymes. I. Purification and characterization of endo-1,4-beta-xylanase from Aspergillus niger str. 14. Biochim Biophys Acta. 1977 Sep 15;484(1):79–93. doi: 10.1016/0005-2744(77)90114-0. [DOI] [PubMed] [Google Scholar]
- Haas H., Herfurth E., Stöffler G., Redl B. Purification, characterization and partial amino acid sequences of a xylanase produced by Penicillium chrysogenum. Biochim Biophys Acta. 1992 Oct 27;1117(3):279–286. doi: 10.1016/0304-4165(92)90025-p. [DOI] [PubMed] [Google Scholar]
- Henrissat B., Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1993 Aug 1;293(Pt 3):781–788. doi: 10.1042/bj2930781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Irwin D., Jung E. D., Wilson D. B. Characterization and sequence of a Thermomonospora fusca xylanase. Appl Environ Microbiol. 1994 Mar;60(3):763–770. doi: 10.1128/aem.60.3.763-770.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keskar S. S., Rao M. B., Deshpande V. V. Characterization and sequencing of an active-site cysteine-containing peptide from the xylanase of a thermotolerant Streptomyces. Biochem J. 1992 Feb 1;281(Pt 3):601–605. doi: 10.1042/bj2810601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keskar S. S., Srinivasan M. C., Deshpande V. V. Chemical modification of a xylanase from a thermotolerant Streptomyces. Evidence for essential tryptophan and cysteine residues at the active site. Biochem J. 1989 Jul 1;261(1):49–55. doi: 10.1042/bj2610049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khasin A., Alchanati I., Shoham Y. Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl Environ Microbiol. 1993 Jun;59(6):1725–1730. doi: 10.1128/aem.59.6.1725-1730.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lee Y. E., Lowe S. E., Henrissat B., Zeikus J. G. Characterization of the active site and thermostability regions of endoxylanase from Thermoanaerobacterium saccharolyticum B6A-RI. J Bacteriol. 1993 Sep;175(18):5890–5898. doi: 10.1128/jb.175.18.5890-5898.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakamura S., Wakabayashi K., Nakai R., Aono R., Horikoshi K. Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1. Appl Environ Microbiol. 1993 Jul;59(7):2311–2316. doi: 10.1128/aem.59.7.2311-2316.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SMOGYI M. Notes on sugar determination. J Biol Chem. 1952 Mar;195(1):19–23. [PubMed] [Google Scholar]
- Simpson H. D., Haufler U. R., Daniel R. M. An extremely thermostable xylanase from the thermophilic eubacterium Thermotoga. Biochem J. 1991 Jul 15;277(Pt 2):413–417. doi: 10.1042/bj2770413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TREVELYAN W. E., PROCTER D. P., HARRISON J. S. Detection of sugars on paper chromatograms. Nature. 1950 Sep 9;166(4219):444–445. doi: 10.1038/166444b0. [DOI] [PubMed] [Google Scholar]
- Tsujibo H., Miyamoto K., Kuda T., Minami K., Sakamoto T., Hasegawa T., Inamori Y. Purification, properties, and partial amino acid sequences of thermostable xylanases from Streptomyces thermoviolaceus OPC-520. Appl Environ Microbiol. 1992 Jan;58(1):371–375. doi: 10.1128/aem.58.1.371-375.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Törrönen A., Kubicek C. P., Henrissat B. Amino acid sequence similarities between low molecular weight endo-1,4-beta-xylanases and family H cellulases revealed by clustering analysis. FEBS Lett. 1993 Apr 26;321(2-3):135–139. doi: 10.1016/0014-5793(93)80094-b. [DOI] [PubMed] [Google Scholar]
- Wong K. K., Tan L. U., Saddler J. N. Multiplicity of beta-1,4-xylanase in microorganisms: functions and applications. Microbiol Rev. 1988 Sep;52(3):305–317. doi: 10.1128/mr.52.3.305-317.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]