Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1993 Jan;59(1):250–254. doi: 10.1128/aem.59.1.250-254.1993

Characterization of the structural gene encoding a copper-containing nitrite reductase and homology of this gene to DNA of other denitrifiers.

R W Ye 1, M R Fries 1, S G Bezborodnikov 1, B A Averill 1, J M Tiedje 1
PMCID: PMC202086  PMID: 8439151

Abstract

A copper-containing nitrite reductase gene (nirU) from Pseudomonas sp. strain G-179 was found in a 1.9-kb EcoRI-BamHI DNA fragment. The coding region contained information for a polypeptide of 379 amino acids. The encoded protein had 78% identity in amino acid sequence to the nitrite reductase purified from Achromobacter cycloclastes. The ligands for type 1 copper- and type 2 copper-binding sites found in A. cycloclastes were also found in Pseudomonas sp. strain G-179, suggesting that these binding sites are conserved. Upstream from the promoter, two putative fnr boxes were found, suggesting that an FNR-like protein may be involved in regulation of the nitrite reductase gene under anaerobic conditions. When the 1.9-kb clone was used to probe Southern blots for similar sequences in DNAs from different denitrifiers, hybridization bands were seen for 15 of 16 denitrifiers known to have nitrite reductase containing copper. Except for Pseudomonas stutzeri JM300, all denitrifiers tested that have nitrite reductases containing heme c,d1 showed no or weak hybridization to this probe. Thus, this structural gene may be useful as a probe to detect denitrifiers with copper-containing nitrite reductases.

Full text

PDF
250

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Coyne M. S., Arunakumari A., Averill B. A., Tiedje J. M. Immunological identification and distribution of dissimilatory heme cd1 and nonheme copper nitrite reductases in denitrifying bacteria. Appl Environ Microbiol. 1989 Nov;55(11):2924–2931. doi: 10.1128/aem.55.11.2924-2931.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Coyne M. S., Arunakumari A., Pankratz H. S., Tiedje J. M. Localization of the cytochrome cd1 and copper nitrite reductases in denitrifying bacteria. J Bacteriol. 1990 May;172(5):2558–2562. doi: 10.1128/jb.172.5.2558-2562.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fenderson F. F., Kumar S., Adman E. T., Liu M. Y., Payne W. J., LeGall J. Amino acid sequence of nitrite reductase: a copper protein from Achromobacter cycloclastes. Biochemistry. 1991 Jul 23;30(29):7180–7185. doi: 10.1021/bi00243a020. [DOI] [PubMed] [Google Scholar]
  5. Galimand M., Gamper M., Zimmermann A., Haas D. Positive FNR-like control of anaerobic arginine degradation and nitrate respiration in Pseudomonas aeruginosa. J Bacteriol. 1991 Mar;173(5):1598–1606. doi: 10.1128/jb.173.5.1598-1606.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gamble T. N., Betlach M. R., Tiedje J. M. Numerically dominant denitrifying bacteria from world soils. Appl Environ Microbiol. 1977 Apr;33(4):926–939. doi: 10.1128/aem.33.4.926-939.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Godden J. W., Turley S., Teller D. C., Adman E. T., Liu M. Y., Payne W. J., LeGall J. The 2.3 angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes. Science. 1991 Jul 26;253(5018):438–442. doi: 10.1126/science.1862344. [DOI] [PubMed] [Google Scholar]
  8. Hochstein L. I., Tomlinson G. A. The enzymes associated with denitrification. Annu Rev Microbiol. 1988;42:231–261. doi: 10.1146/annurev.mi.42.100188.001311. [DOI] [PubMed] [Google Scholar]
  9. Hoitink C. W., Woudt L. P., Turenhout J. C., van de Kamp M., Canters G. W. Isolation and sequencing of the Alcaligenes denitrificans azurin-encoding gene: comparison with the genes encoding blue copper proteins from Pseudomonas aeruginosa and Alcaligenes faecalis. Gene. 1990 May 31;90(1):15–20. doi: 10.1016/0378-1119(90)90434-s. [DOI] [PubMed] [Google Scholar]
  10. Iuchi S., Lin E. C. Adaptation of Escherichia coli to respiratory conditions: regulation of gene expression. Cell. 1991 Jul 12;66(1):5–7. doi: 10.1016/0092-8674(91)90130-q. [DOI] [PubMed] [Google Scholar]
  11. Kakutani T., Watanabe H., Arima K., Beppu T. A blue protein as an inactivating factor for nitrite reductase from Alcaligenes faecalis strain S-6. J Biochem. 1981 Feb;89(2):463–472. doi: 10.1093/oxfordjournals.jbchem.a133221. [DOI] [PubMed] [Google Scholar]
  12. Kashem M. A., Dunford H. B., Liu M. Y., Payne W. J., LeGall J. Kinetic studies of the copper nitrite reductase from Achromobacter cycloclastes and its interaction with a blue copper protein. Biochem Biophys Res Commun. 1987 May 29;145(1):563–568. doi: 10.1016/0006-291x(87)91357-x. [DOI] [PubMed] [Google Scholar]
  13. Libby E., Averill B. A. Evidence that the type 2 copper centers are the site of nitrite reduction by Achromobacter cycloclastes nitrite reductase. Biochem Biophys Res Commun. 1992 Sep 30;187(3):1529–1535. doi: 10.1016/0006-291x(92)90476-2. [DOI] [PubMed] [Google Scholar]
  14. Masuko M., Iwasaki H., Sakurai T., Suzuki S., Nakahara A. Characterization of nitrite reductase from a denitrifier, Alcaligenes sp. NCIB 11015. A novel copper protein. J Biochem. 1984 Aug;96(2):447–454. doi: 10.1093/oxfordjournals.jbchem.a134856. [DOI] [PubMed] [Google Scholar]
  15. Silvestrini M. C., Galeotti C. L., Gervais M., Schininà E., Barra D., Bossa F., Brunori M. Nitrite reductase from Pseudomonas aeruginosa: sequence of the gene and the protein. FEBS Lett. 1989 Aug 28;254(1-2):33–38. doi: 10.1016/0014-5793(89)81004-x. [DOI] [PubMed] [Google Scholar]
  16. Smith G. B., Tiedje J. M. Isolation and characterization of a nitrite reductase gene and its use as a probe for denitrifying bacteria. Appl Environ Microbiol. 1992 Jan;58(1):376–384. doi: 10.1128/aem.58.1.376-384.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stewart V. Nitrate respiration in relation to facultative metabolism in enterobacteria. Microbiol Rev. 1988 Jun;52(2):190–232. doi: 10.1128/mr.52.2.190-232.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Totten P. A., Lara J. C., Lory S. The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene. J Bacteriol. 1990 Jan;172(1):389–396. doi: 10.1128/jb.172.1.389-396.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Viebrock A., Zumft W. G. Molecular cloning, heterologous expression, and primary structure of the structural gene for the copper enzyme nitrous oxide reductase from denitrifying Pseudomonas stutzeri. J Bacteriol. 1988 Oct;170(10):4658–4668. doi: 10.1128/jb.170.10.4658-4668.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Yamamoto K., Uozumi T., Beppu T. The blue copper protein gene of Alcaligenes faecalis S-6 directs secretion of blue copper protein from Escherichia coli cells. J Bacteriol. 1987 Dec;169(12):5648–5652. doi: 10.1128/jb.169.12.5648-5652.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ye R. W., Averill B. A., Tiedje J. M. Characterization of Tn5 mutants deficient in dissimilatory nitrite reduction in Pseudomonas sp. strain G-179, which contains a copper nitrite reductase. J Bacteriol. 1992 Oct;174(20):6653–6658. doi: 10.1128/jb.174.20.6653-6658.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zumft W. G., Gotzmann D. J., Kroneck P. M. Type 1, blue copper proteins constitute a respiratory nitrite-reducing system in Pseudomonas aureofaciens. Eur J Biochem. 1987 Oct 15;168(2):301–307. doi: 10.1111/j.1432-1033.1987.tb13421.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES