Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1993 Feb;59(2):636–639. doi: 10.1128/aem.59.2.636-639.1993

Isolation of Rhizobium meliloti nod Gene Inducers from Alfalfa Rhizosphere Soil

Milagros León-Barrios 1,, Felix D Dakora 1,, Cecillia M Joseph 1, Donald A Phillips 1,*
PMCID: PMC202160  PMID: 16348881

Abstract

Methanolic extracts of alfalfa rhizosphere soil induce more nod gene transcription in Rhizobium meliloti than extracts of nonrhizosphere soil. Six peaks of nod-inducing activity were separated by high-performance liquid chromatography from rhizosphere soil extract, and one compound was identified by 1H nuclear magnetic resonance, mass spectrometry, and UV-visible spectra as a formononetin-7-O-glycoside that activates both NodD1 and NodD2 proteins. The unanticipated presence of a glycoside in rhizosphere soil suggests either that large amounts of the glycoside were exuded by roots or that some glycosides are unexpectedly stable in soil.

Full text

PDF
636

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fisher R. F., Egelhoff T. T., Mulligan J. T., Long S. R. Specific binding of proteins from Rhizobium meliloti cell-free extracts containing NodD to DNA sequences upstream of inducible nodulation genes. Genes Dev. 1988 Mar;2(3):282–293. doi: 10.1101/gad.2.3.282. [DOI] [PubMed] [Google Scholar]
  2. Hartwig U. A., Maxwell C. A., Joseph C. M., Phillips D. A. Effects of alfalfa nod gene-inducing flavonoids on nodABC transcription in Rhizobium meliloti strains containing different nodD genes. J Bacteriol. 1990 May;172(5):2769–2773. doi: 10.1128/jb.172.5.2769-2773.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hartwig U. A., Phillips D. A. Release and Modification of nod-Gene-Inducing Flavonoids from Alfalfa Seeds. Plant Physiol. 1991 Mar;95(3):804–807. doi: 10.1104/pp.95.3.804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hungria M., Joseph C. M., Phillips D. A. Rhizobium nod Gene Inducers Exuded Naturally from Roots of Common Bean (Phaseolus vulgaris L.). Plant Physiol. 1991 Oct;97(2):759–764. doi: 10.1104/pp.97.2.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jacobs T. W., Egelhoff T. T., Long S. R. Physical and genetic map of a Rhizobium meliloti nodulation gene region and nucleotide sequence of nodC. J Bacteriol. 1985 May;162(2):469–476. doi: 10.1128/jb.162.2.469-476.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kessmann H., Edwards R., Geno P. W., Dixon R. A. Stress Responses in Alfalfa (Medicago sativa L.) : V. Constitutive and Elicitor-Induced Accumulation of Isoflavonoid Conjugates in Cell Suspension Cultures. Plant Physiol. 1990 Sep;94(1):227–232. doi: 10.1104/pp.94.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kosslak R. M., Bookland R., Barkei J., Paaren H. E., Appelbaum E. R. Induction of Bradyrhizobium japonicum common nod genes by isoflavones isolated from Glycine max. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7428–7432. doi: 10.1073/pnas.84.21.7428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Köster J., Strack D., Barz W. High Performance Liquid Chromatographic Separation of Isoflavones and Structural Elucidation of Isoflavone 7-O-glucoside 6''-malonates from Cicer arietinum. Planta Med. 1983 Jul;48(7):131–135. doi: 10.1055/s-2007-969907. [DOI] [PubMed] [Google Scholar]
  9. Maxwell C. A., Phillips D. A. Concurrent Synthesis and Release of nod-Gene-Inducing Flavonoids from Alfalfa Roots. Plant Physiol. 1990 Aug;93(4):1552–1558. doi: 10.1104/pp.93.4.1552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Meade H. M., Long S. R., Ruvkun G. B., Brown S. E., Ausubel F. M. Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol. 1982 Jan;149(1):114–122. doi: 10.1128/jb.149.1.114-122.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mulligan J. T., Long S. R. Induction of Rhizobium meliloti nodC expression by plant exudate requires nodD. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6609–6613. doi: 10.1073/pnas.82.19.6609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Peters N. K., Frost J. W., Long S. R. A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science. 1986 Aug 29;233(4767):977–980. doi: 10.1126/science.3738520. [DOI] [PubMed] [Google Scholar]
  13. Phillips D. A., Joseph C. M., Maxwell C. A. Trigonelline and Stachydrine Released from Alfalfa Seeds Activate NodD2 Protein in Rhizobium meliloti. Plant Physiol. 1992 Aug;99(4):1526–1531. doi: 10.1104/pp.99.4.1526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Recourt K., Schripsema J., Kijne J. W., van Brussel A. A., Lugtenberg B. J. Inoculation of Vicia sativa subsp. nigra roots with Rhizobium leguminosarum biovar viciae results in release of nod gene activating flavanones and chalcones. Plant Mol Biol. 1991 May;16(5):841–852. doi: 10.1007/BF00015076. [DOI] [PubMed] [Google Scholar]
  15. Spencer B. The non-academic environment. Biochem Soc Trans. 1990 Apr;18(2):162–166. doi: 10.1042/bst0180162. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES