Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1993 Mar;59(3):822–827. doi: 10.1128/aem.59.3.822-827.1993

Aspartate aminotransferase and tylosin biosynthesis in Streptomyces fradiae.

S H Lee 1, K J Lee 1
PMCID: PMC202195  PMID: 8481008

Abstract

Aspartate aminotransferase as well as valine dehydrogenase and threonine dehydratase was required for the biosynthesis of tylosin in Streptomyces fradiae NRRL 2702. The biosynthesis of these enzymes and tylosin production were repressed by high concentrations of ammonium ions. The change in specific tylosin production rates in batch cultures with different initial concentrations of ammonium ions showed patterns similar to those of the specific production rates of aspartate aminotransferase, valine dehydrogenase, and threonine dehydratase. Aspartate aminotransferase has been purified by acetone precipitation, DEAE-cellulose, hydroxyapatite, and preparative electrophoresis chromatographies. The purified enzyme (120 kDa) consisted of two subunits identical in molecular mass (54 kDa) and showed homogeneity, giving one band with a pI of 4.2 upon preparative isoelectric focusing. The enzyme was specific for L-aspartate in the forward reaction; the Km values were determined to be 2.7 mM for L-aspartate, 0.7 mM for 2-oxyglutarate, 12.8 mM for L-glutamate, and 0.15 mM for oxaloacetate. The enzyme was somewhat thermostable, having a maximum activity at 55 degrees C, and had a broad pH optimum that ranged from 5.5 to 8.0. The mode of action was a ping-pong-bi-bi mechanism.

Full text

PDF
822

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BABSON A. L., SHAPIRO P. O., WILLIAMS P. A., PHILLIPS G. E. The use of a diazonium salt for the determination of glutamic-oxalacetic transaminase in serum. Clin Chim Acta. 1962 Mar;7:199–205. doi: 10.1016/0009-8981(62)90010-4. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Evans C. H., Wilson A. C., Gelléri B. A. Preparative isoelectric focusing in ampholine electrofocusing columns versus immobiline polyacrylamide gel for the purification of biologically active leukoregulin. Anal Biochem. 1989 Mar;177(2):358–363. doi: 10.1016/0003-2697(89)90066-3. [DOI] [PubMed] [Google Scholar]
  4. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  5. Kennedy J. H. High performance liquid chromatographic analysis of fermentation broths: cephalosporin C and tylosin. J Chromatogr Sci. 1978 Oct 10;16(10):492–495. doi: 10.1093/chromsci/16.10.492. [DOI] [PubMed] [Google Scholar]
  6. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  7. Lee S. H., Lee K. J. Relationship between threonine dehydratase and biosynthesis of tylosin in Streptomyces fradiae. J Gen Microbiol. 1991 Nov;137(11):2547–2553. doi: 10.1099/00221287-137-11-2547. [DOI] [PubMed] [Google Scholar]
  8. Marino G., Nitti G., Arnone M. I., Sannia G., Gambacorta A., De Rosa M. Purification and characterization of aspartate aminotransferase from the thermoacidophilic archaebacterium Sulfolobus solfataricus. J Biol Chem. 1988 Sep 5;263(25):12305–12309. [PubMed] [Google Scholar]
  9. Mavrides C., Orr W. Multispecific aspartate and aromatic amino acid aminotransferases in Escherichia coli. J Biol Chem. 1975 Jun 10;250(11):4128–4133. [PubMed] [Google Scholar]
  10. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  11. Omura S., Takeshima H., Nakagawa A., Miyazawa J., Piriou F., Lukacs G. Studies on the biosynthesis of 16-membered macrolide antibiotics using carbon-13 nuclear magnetic resonance spectroscopy. Biochemistry. 1977 Jun 28;16(13):2860–2866. doi: 10.1021/bi00632a009. [DOI] [PubMed] [Google Scholar]
  12. Omura S., Taki A., Matsuda K., Tanaka Y. Ammonium ions suppress the amino acid metabolism involved in the biosynthesis of protylonolide in a mutant of Streptomyces fradiae. J Antibiot (Tokyo) 1984 Nov;37(11):1362–1369. doi: 10.7164/antibiotics.37.1362. [DOI] [PubMed] [Google Scholar]
  13. Omura S., Tanaka Y., Mamada H., Masuma R. Ammonium ion suppresses the biosynthesis of tylosin aglycone by interference with valine catabolism in Streptomyces fradiae. J Antibiot (Tokyo) 1983 Dec;36(12):1792–1794. doi: 10.7164/antibiotics.36.1792. [DOI] [PubMed] [Google Scholar]
  14. Safer B., Williamson J. R. Mitochondrial-cytosolic interactions in perfused rat heart. Role of coupled transamination in repletion of citric acid cycle intermediates. J Biol Chem. 1973 Apr 10;248(7):2570–2579. [PubMed] [Google Scholar]
  15. Seno E. T., Pieper R. L., Huber F. M. Terminal stages in the biosynthesis of tylosin. Antimicrob Agents Chemother. 1977 Mar;11(3):455–461. doi: 10.1128/aac.11.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sung M. H., Tanizawa K., Tanaka H., Kuramitsu S., Kagamiyama H., Soda K. Purification and characterization of thermostable aspartate aminotransferase from a thermophilic Bacillus species. J Bacteriol. 1990 Mar;172(3):1345–1351. doi: 10.1128/jb.172.3.1345-1351.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Turano F. J., Wilson B. J., Matthews B. F. Purification and characterization of aspartate aminotransferase isoenzymes from carrot suspension cultures. Plant Physiol. 1990 Mar;92(3):587–594. doi: 10.1104/pp.92.3.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. VELICK S. F., VAVRA J. A kinetic and equilibrium analysis of the glutamic oxaloacetate transaminase mechanism. J Biol Chem. 1962 Jul;237:2109–2122. [PubMed] [Google Scholar]
  19. Vancura A., Vancurová I., Volc J., Fussey S. P., Flieger M., Neuzil J., Marsálek J., Behal V. Valine dehydrogenase from Streptomyces fradiae: purification and properties. J Gen Microbiol. 1988 Dec;134(12):3213–3219. doi: 10.1099/00221287-134-12-3213. [DOI] [PubMed] [Google Scholar]
  20. Wallin R., Hall T. R., Hutson S. M. Purification of branched chain aminotransferase from rat heart mitochondria. J Biol Chem. 1990 Apr 15;265(11):6019–6024. [PubMed] [Google Scholar]
  21. Yagi T., Kagamiyama H., Motosugi K., Nozaki M., Soda K. Crystallization and properties of aspartate aminotransferase from Escherichia coli B. FEBS Lett. 1979 Apr 1;100(1):81–84. doi: 10.1016/0014-5793(79)81135-7. [DOI] [PubMed] [Google Scholar]
  22. Yagi T., Toyosato M., Soda K. Crystalline aspartate aminotransferase from Pseudomonas striata. FEBS Lett. 1976 Jan 1;61(1):34–37. doi: 10.1016/0014-5793(76)80165-2. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES