Abstract
The enzymes pectin methylesterase and polygalacturonate hydrolase, which are responsible for the initial steps of pectin degradation by Clostridium thermosaccharolyticum, were shown to be induced on the polymeric substrates pectin and pectate, as well as on oligogalacturonates, and to be repressed in the presence of glucose. The digalacturonate and trigalacturonate produced by the extracellular pectin methylesterase-polygalacturonate hydrolase complex were transported across the cytoplasmic membrane and hydrolyzed by an inducible oligogalacturonate hydrolase to galacturonate. The oligogalacturonate hydrolase was separated from the polygalacturonate hydrolase and characterized. Its temperature optimum was 65°C, and its pH optimum was 6. The native molecular size was 90 kDa, and the enzyme was stable for more than 1 h at 65°C. The maximum reaction rate on oligomers decreased with the increasing degree of polymerization. Galacturonate was released by hydrolysis from the nonreducing end of the oligomer. The amounts of pectinolytic enzymes produced were all strictly correlated to the amount of biomass formed. Galacturonate was metabolized via a modified Entner-Doudoroff route.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bender R., Andreesen J. R., Gottschalk G. 2-keto-3-deoxygluconate, an intermediate in the fermentation of gluconate by clostridia. J Bacteriol. 1971 Aug;107(2):570–573. doi: 10.1128/jb.107.2.570-573.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Chaby R., Charon D., Sarfati R. S. Estimation of 3-deoxy-2-ketoaldonic acids. Methods Enzymol. 1975;41:32–34. doi: 10.1016/s0076-6879(75)41008-4. [DOI] [PubMed] [Google Scholar]
- Hasegawa S., Nagel C. W. Isolation of an oligogalacturonate hydrolase from a Bacillus specie. Arch Biochem Biophys. 1968 Mar 20;124(1):513–520. doi: 10.1016/0003-9861(68)90360-3. [DOI] [PubMed] [Google Scholar]
- Heijthuijsen J. H., Hansen T. A. Betaine fermentation and oxidation by marine desulfuromonas strains. Appl Environ Microbiol. 1989 Apr;55(4):965–969. doi: 10.1128/aem.55.4.965-969.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heinrichova K., Wojciechowicz M., Ziołecki A. The pectinolytic enzyme of Selenomonas ruminantium. J Appl Bacteriol. 1989 Feb;66(2):169–174. doi: 10.1111/j.1365-2672.1989.tb02466.x. [DOI] [PubMed] [Google Scholar]
- Hsu E. J., Vaughn R. H. Production and catabolite repression of the constitutive polygalacturonic acid trans-eliminase of Aeromonas liquefaciens. J Bacteriol. 1969 Apr;98(1):172–181. doi: 10.1128/jb.98.1.172-181.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jensen N. S., Canale-Parola E. Bacteroides pectinophilus sp. nov. and Bacteroides galacturonicus sp. nov.: two pectinolytic bacteria from the human intestinal tract. Appl Environ Microbiol. 1986 Oct;52(4):880–887. doi: 10.1128/aem.52.4.880-887.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KILGORE W. W., STARR M. P. Catabolism of galacturonic and glucuronic acids by Erwinia carotovora. J Biol Chem. 1959 Sep;234:2227–2235. [PubMed] [Google Scholar]
- KOLLER A., NEUKOM H. DETECTION OF OLIGOGALACTURONIC ACIDS BY THIN-LAYER CHROMATOGRAPHY. Biochim Biophys Acta. 1964 Nov 1;83:366–367. doi: 10.1016/0926-6526(64)90020-5. [DOI] [PubMed] [Google Scholar]
- Kersters K., De Ley J. 2-keto-3-deoxy-D-gluconate. Methods Enzymol. 1975;41:99–101. doi: 10.1016/s0076-6879(75)41024-2. [DOI] [PubMed] [Google Scholar]
- Kersters K., De Ley J. D-gluconate dehydratase from Alcaligenes. Methods Enzymol. 1975;42:301–304. doi: 10.1016/0076-6879(75)42131-0. [DOI] [PubMed] [Google Scholar]
- NG H., VAUGHN R. H. CLOSTRIDIUM RUBRUM SP. N. AND OTHER PECTINOLYTIC CLOSTRIDIA FROM SOIL. J Bacteriol. 1963 May;85:1104–1113. doi: 10.1128/jb.85.5.1104-1113.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nasser W., Reverchon S., Robert-Baudouy J. Purification and functional characterization of the KdgR protein, a major repressor of pectinolysis genes of Erwinia chrysanthemi. Mol Microbiol. 1992 Jan;6(2):257–265. doi: 10.1111/j.1365-2958.1992.tb02007.x. [DOI] [PubMed] [Google Scholar]
- PREISS J., ASHWELL G. Polygalacturonic acid metabolism in bacteria. II. Formation and metabolism of 3-deoxy-D-glycero-2, 5-hexodiulosonic acid. J Biol Chem. 1963 May;238:1577–1583. [PubMed] [Google Scholar]
- Robillard G. T., Blaauw M. Enzyme II of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: protein-protein and protein-phospholipid interactions. Biochemistry. 1987 Sep 8;26(18):5796–5803. doi: 10.1021/bi00392a032. [DOI] [PubMed] [Google Scholar]
- Speelmans G., de Vrij W., Konings W. N. Characterization of amino acid transport in membrane vesicles from the thermophilic fermentative bacterium Clostridium fervidus. J Bacteriol. 1989 Jul;171(7):3788–3795. doi: 10.1128/jb.171.7.3788-3795.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Rijssel M., Gerwig G. J., Hansen T. A. Isolation and characterization of an extracellular glycosylated protein complex from Clostridium thermosaccharolyticum with pectin methylesterase and polygalacturonate hydrolase activity. Appl Environ Microbiol. 1993 Mar;59(3):828–836. doi: 10.1128/aem.59.3.828-836.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]