Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1988 Jan;54(1):69–73. doi: 10.1128/aem.54.1.69-73.1988

Characterization of bacteriophage nucleic acids obtained from Clostridium botulinum types C and D.

N Fujii 1, K Oguma 1, N Yokosawa 1, K Kimura 1, K Tsuzuki 1
PMCID: PMC202398  PMID: 3278690

Abstract

Nontoxigenic strains of Clostridium botulinum types C and D are converted to toxigenic strains by infection with specific Tox+ bacteriophages. The nucleic acids were extracted from five converting phages, c-st, c-468, c-203, c-d6f, and d-1873, and one nonconverting phage, c-n71, and treated with nucleases. The nucleic acids isolated were not digested by RNase A, but were digested by DNase I and exonuclease III, indicating that they were double-stranded DNA. On the basis of the restriction endonuclease digestion patterns on 0.8% agarose gel electrophoresis, the length of c-st, c-n71, c-468, and c-d6f phage DNAs was estimated to be about 110 kilobase pairs and that of c-203 and d-1873 was about 150 kilobase pairs. The digestion patterns of c-st, c-468, and c-n71 phage DNAs by PstI and HindIII were very similar. High homology was observed in the dot hybridization test. For other phages and nucleases, a good similarity was not observed. Only a little similarity was observed between c-203 and c-d6f phages. The existence of the structural genes for the toxin in both c-st and c-n71 phages was confirmed by the hybridization test with these phage DNAs and the oligonucleotide probe which represented the DNA sequence predicted for the N-terminal amino acids (2 to 17) of C. botulinum type C toxin. The loss of the converting ability of c-n71 phage may be caused not by the deletion of the tox+ gene but rather by the base mutation in c-st phage DNA.

Full text

PDF
69

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dolman C. E., Chang E. Bacteriophages of Clostridium botulinum. Can J Microbiol. 1972 Jan;18(1):67–76. doi: 10.1139/m72-011. [DOI] [PubMed] [Google Scholar]
  2. Eklund M. W., Poysky F. T. Interconversion of type C and D strains of Clostridium botulinum by specific bacteriophages. Appl Microbiol. 1974 Jan;27(1):251–258. doi: 10.1128/am.27.1.251-258.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eklund M. W., Poysky F. T., Reed S. M. Bacteriophage and the toxigenicity of Clostridium botulinum type D. Nat New Biol. 1972 Jan 5;235(53):16–17. doi: 10.1038/newbio235016a0. [DOI] [PubMed] [Google Scholar]
  4. Eklund M. W., Poysky F. T., Reed S. M., Smith C. A. Bacteriophage and the toxigenicity of Clostridium botulinum type C. Science. 1971 Apr 30;172(3982):480–482. doi: 10.1126/science.172.3982.480. [DOI] [PubMed] [Google Scholar]
  5. Inoue K., Iida H. Bacteriophages of Clostridium botulinum. J Virol. 1968 May;2(5):537–540. doi: 10.1128/jvi.2.5.537-540.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Inoue K., Iida H. Conversion of toxigenicity in Clostridium botulinum type C. Jpn J Microbiol. 1970 Jan;14(1):87–89. doi: 10.1111/j.1348-0421.1970.tb00495.x. [DOI] [PubMed] [Google Scholar]
  7. Inoue K., Iida H. Phage-conversion of toxigenicity in Clostridium botulinum types C and D. Jpn J Med Sci Biol. 1971 Feb;24(1):53–56. [PubMed] [Google Scholar]
  8. Oguma K., Iida H., Inoue K. Bacteriophage and toxigenicity in Clostridium botulinum: an additional evidence for phage conversion. Jpn J Microbiol. 1973 Sep;17(5):425–426. doi: 10.1111/j.1348-0421.1973.tb00794.x. [DOI] [PubMed] [Google Scholar]
  9. Oguma K., Iida H., Inoue K. Observations on nonconverting phage, c-n71, obtained from a nontoxigenic strain of Clostridium botulinum type C. Jpn J Microbiol. 1975 Jun;19(3):167–172. doi: 10.1111/j.1348-0421.1975.tb00864.x. [DOI] [PubMed] [Google Scholar]
  10. Oguma K., Iida H., Shiozaki M., Inoue K. Antigenicity of converting phages obtained from Clostridium botulinum types C and D. Infect Immun. 1976 Mar;13(3):855–860. doi: 10.1128/iai.13.3.855-860.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Oguma K., Iida H., Shiozaki M. Phage conversion to hemagglutinin production in Clostridium botulinum types C and D. Infect Immun. 1976 Sep;14(3):597–602. doi: 10.1128/iai.14.3.597-602.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Oguma K., Murayama S., Syuto B., Iida H., Kubo S. Analysis of antigenicity of Clostridium botulinum type C1 and D toxins by polyclonal and monoclonal antibodies. Infect Immun. 1984 Feb;43(2):584–588. doi: 10.1128/iai.43.2.584-588.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Oguma K., Syuto B., Iida H., Kubo S. Antigenic similarity of toxins produced by Clostridium botulinum type C and D strains. Infect Immun. 1980 Dec;30(3):656–660. doi: 10.1128/iai.30.3.656-660.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. STERNE M. Hemagglutination by Clostridium botulinum type D. Science. 1954 Apr 2;119(3092):440–441. doi: 10.1126/science.119.3092.440. [DOI] [PubMed] [Google Scholar]
  15. Yamamoto K. R., Alberts B. M., Benzinger R., Lawhorne L., Treiber G. Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology. 1970 Mar;40(3):734–744. doi: 10.1016/0042-6822(70)90218-7. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES