Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1988 Jan;54(1):197–203. doi: 10.1128/aem.54.1.197-203.1988

Metabolism of 6-nitrochrysene by intestinal microflora.

B W Manning 1, W L Campbell 1, W Franklin 1, K B Delclos 1, C E Cerniglia 1
PMCID: PMC202421  PMID: 3345078

Abstract

Since bacterial nitroreduction may play a critical role in the activation of nitropolycyclic aromatic hydrocarbons, we have used batch and semicontinuous culture systems to determine the ability of intestinal microflora to metabolize the carcinogen 6-nitrochrysene (6-NC). 6-NC was metabolized by the intestinal microflora present in the semicontinuous culture system to 6-aminochrysene (6-AC), N-formyl-6-aminochrysene (6-FAC), and 6-nitrosochrysene (6-NOC). These metabolites were isolated and identified by high-performance liquid chromatography, mass spectrometry, and UV-visible spectrophotometry and compared with authentic compounds. Almost all of the 6-NC was metabolized after 10 days. Nitroreduction of 6-NC to 6-AC was rapid; the 6-AC concentration reached a maximum at 48 h. The ratio of the formation of 6-AC to 6-FAC to 6-NOC at 48 h was 93.4:6.3:0.3. Interestingly, compared with results in the semicontinuous culture system, the only metabolite detected in the batch studies was 6-AC. The rate of nitroreduction differed among human, rat, and mouse intestinal microflora, with human intestinal microflora metabolizing 6-NC to the greatest extent. Since 6-AC has been shown to be carcinogenic in mice and since nitroso derivatives of other nitropolycyclic aromatic hydrocarbons are biologically active, our results suggest that the intestinal microflora has the enzymatic capacity to generate genotoxic compounds and may play an important role in the carcinogenicity of 6-NC.

Full text

PDF
197

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown J. P. Role of gut bacterial flora in nutrition and health: a review of recent advances in bacteriological techniques, metabolism, and factors affecting flora composition. CRC Crit Rev Food Sci Nutr. 1977 Jan;8(3):229–336. doi: 10.1080/10408397709527224. [DOI] [PubMed] [Google Scholar]
  2. Busby W. F., Jr, Garner R. C., Chow F. L., Martin C. N., Stevens E. K., Newberne P. M., Wogan G. N. 6-Nitrochrysene is a potent tumorigen in newborn mice. Carcinogenesis. 1985 May;6(5):801–803. doi: 10.1093/carcin/6.5.801. [DOI] [PubMed] [Google Scholar]
  3. Campbell J., Crumplin G. C., Garner J. V., Garner R. C., Martin C. N., Rutter A. Nitrated polycyclic aromatic hydrocarbons: potent bacterial mutagens and stimulators of DNA repair synthesis in cultured human cells. Carcinogenesis. 1981;2(6):559–565. doi: 10.1093/carcin/2.6.559. [DOI] [PubMed] [Google Scholar]
  4. Cerniglia C. E., Howard P. C., Fu P. P., Franklin W. Metabolism of nitropolycyclic aromatic hydrocarbons by human intestinal microflora. Biochem Biophys Res Commun. 1984 Aug 30;123(1):262–270. doi: 10.1016/0006-291x(84)90407-8. [DOI] [PubMed] [Google Scholar]
  5. Cerniglia C. E., Zhuo Z., Manning B. W., Federle T. W., Heflich R. H. Mutagenic activation of the benzidine-based dye direct black 38 by human intestinal microflora. Mutat Res. 1986 Sep;175(1):11–16. doi: 10.1016/0165-7992(86)90138-7. [DOI] [PubMed] [Google Scholar]
  6. Chang R. L., Levin W., Wood A. W., Yagi H., Tada M., Vyas K. P., Jerina D. M., Conney A. H. Tumorigenicity of enantiomers of chrysene 1,2-dihydrodiol and of the diastereomeric bay-region chrysene 1,2-diol-3,4-epoxides on mouse skin and in newborn mice. Cancer Res. 1983 Jan;43(1):192–196. [PubMed] [Google Scholar]
  7. Cummings J. H., Hill M. J., Bone E. S., Branch W. J., Jenkins D. J. The effect of meat protein and dietary fiber on colonic function and metabolism. II. Bacterial metabolites in feces and urine. Am J Clin Nutr. 1979 Oct;32(10):2094–2101. doi: 10.1093/ajcn/32.10.2094. [DOI] [PubMed] [Google Scholar]
  8. Delclos K. B., Miller D. W., Lay J. O., Jr, Casciano D. A., Walker R. P., Fu P. P., Kadlubar F. F. Identification of C8-modified deoxyinosine and N2- and C8-modified deoxyguanosine as major products of the in vitro reaction of N-hydroxy-6-aminochrysene with DNA and the formation of these adducts in isolated rat hepatocytes treated with 6-nitrochrysene and 6-aminochrysene. Carcinogenesis. 1987 Nov;8(11):1703–1709. doi: 10.1093/carcin/8.11.1703. [DOI] [PubMed] [Google Scholar]
  9. El-Bayoumy K., Hecht S. S., Hoffmann D. Comparative tumor initiating activity on mouse skin of 6-nitrobenzo[a]pyrene, 6-nitrochrysene, 3-nitroperylene, 1-nitropyrene and their parent hydrocarbons. Cancer Lett. 1982 Sep;16(3):333–337. doi: 10.1016/0304-3835(82)90015-5. [DOI] [PubMed] [Google Scholar]
  10. El-Bayoumy K., Hecht S. S. Identification of trans-1,2-dihydro-1,2-dihydroxy-6-nitrochrysene as a major mutagenic metabolite of 6-nitrochrysene. Cancer Res. 1984 Aug;44(8):3408–3413. [PubMed] [Google Scholar]
  11. El-Bayoumy K., Sharma C., Louis Y. M., Reddy B., Hecht S. S. The role of intestinal microflora in the metabolic reduction of 1-nitropyrene to 1-aminopyrene in conventional and germfree rats and in humans. Cancer Lett. 1983 Jul;19(3):311–316. doi: 10.1016/0304-3835(83)90100-3. [DOI] [PubMed] [Google Scholar]
  12. Fu P. P., Chou M. W., Miller D. W., White G. L., Helflich R. H., Beland F. A. The orientation of the nitro substituent predicts the direct-acting bacterial mutagenicity of nitrated polycyclic aromatic hydrocarbons. Mutat Res. 1985 Jul;143(3):173–181. doi: 10.1016/s0165-7992(85)80031-2. [DOI] [PubMed] [Google Scholar]
  13. Fu P. P., Chou M. W., Yang S. K., Beland F. A., Kadlubar F. F., Casciano D. A., Heflich R. H., Evans F. E. Metabolism of the mutagenic environmental pollutant, 6-nitrobenzo[a]pyrene: metabolic activation via ring oxidation. Biochem Biophys Res Commun. 1982 Apr 14;105(3):1037–1043. doi: 10.1016/0006-291x(82)91074-9. [DOI] [PubMed] [Google Scholar]
  14. Goldman P. Biochemical pharmacology of the intestinal flora. Annu Rev Pharmacol Toxicol. 1978;18:523–539. doi: 10.1146/annurev.pa.18.040178.002515. [DOI] [PubMed] [Google Scholar]
  15. Harris B. E., Manning B. W., Federle T. W., Diasio R. B. Conversion of 5-fluorocytosine to 5-fluorouracil by human intestinal microflora. Antimicrob Agents Chemother. 1986 Jan;29(1):44–48. doi: 10.1128/aac.29.1.44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Heflich R. H., Howard P. C., Beland F. A. 1-Nitrosopyrene: an intermediate in the metabolic activation of 1-nitropyrene to a mutagen in Salmonella typhimurium TA1538. Mutat Res. 1985 Mar;149(1):25–32. doi: 10.1016/0027-5107(85)90005-3. [DOI] [PubMed] [Google Scholar]
  17. Howard P. C., Beland F. A., Cerniglia C. E. Reduction of the carcinogen 1-nitropyrene to 1-aminopyrene by rat intestinal bacteria. Carcinogenesis. 1983 Aug;4(8):985–990. doi: 10.1093/carcin/4.8.985. [DOI] [PubMed] [Google Scholar]
  18. Kinouchi T., Manabe Y., Wakisaka K., Ohnishi Y. Biotransformation of 1-nitropyrene in intestinal anaerobic bacteria. Microbiol Immunol. 1982;26(11):993–1005. doi: 10.1111/j.1348-0421.1982.tb00249.x. [DOI] [PubMed] [Google Scholar]
  19. Lambelin G., Roba J., Roncucci R., Parmentier R. Carcinogenicity of 6-aminochrysene in mice. Eur J Cancer. 1975 May;11(5):327–334. doi: 10.1016/0014-2964(75)90060-2. [DOI] [PubMed] [Google Scholar]
  20. Löfroth G., Hefner E., Alfheim I., Møoller M. Mutagenic activity in photocopies. Science. 1980 Aug 29;209(4460):1037–1039. doi: 10.1126/science.6996094. [DOI] [PubMed] [Google Scholar]
  21. Manning B. W., Cerniglia C. E., Federle T. W. Biotransformation of 1-nitropyrene to 1-aminopyrene and N-formyl-1-aminopyrene by the human intestinal microbiota. J Toxicol Environ Health. 1986;18(3):339–346. doi: 10.1080/15287398609530875. [DOI] [PubMed] [Google Scholar]
  22. Manning B. W., Cerniglia C. E., Federle T. W. Metabolism of the benzidine-based azo dye Direct Black 38 by human intestinal microbiota. Appl Environ Microbiol. 1985 Jul;50(1):10–15. doi: 10.1128/aem.50.1.10-15.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mermelstein R., Kiriazides D. K., Butler M., McCoy E. C., Rosenkranz H. S. The extraordinary mutagenicity of nitropyrenes in bacteria. Mutat Res. 1981 Jul;89(3):187–196. doi: 10.1016/0165-1218(81)90236-6. [DOI] [PubMed] [Google Scholar]
  24. Miller T. L., Wolin M. J. Fermentation by the human large intestine microbial community in an in vitro semicontinuous culture system. Appl Environ Microbiol. 1981 Sep;42(3):400–407. doi: 10.1128/aem.42.3.400-407.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moore W. E., Holdeman L. V. Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol. 1974 May;27(5):961–979. doi: 10.1128/am.27.5.961-979.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nachtman J. P., Wei E. T. Evidence for enzymatic reduction of 1-nitropyrene by rat liver fractions. Experientia. 1982 Jul 15;38(7):837–838. doi: 10.1007/BF01972302. [DOI] [PubMed] [Google Scholar]
  27. Pederson T. C., Siak J. S. The role of nitroaromatic compounds in the direct-acting mutagenicity of diesel particle extracts. J Appl Toxicol. 1981 Apr;1(2):54–60. doi: 10.1002/jat.2550010203. [DOI] [PubMed] [Google Scholar]
  28. Roe F. J., Carter R. L., Adamthwaite S. Induction of liver and lung tumours in mice by 6-aminochrysene administered during the 1st 3 days of life. Nature. 1969 Mar 15;221(5185):1063–1064. doi: 10.1038/2211063a0. [DOI] [PubMed] [Google Scholar]
  29. Rosenkranz H. S. Direct-acting mutagens in diesel exhausts: magnitude of the problem. Mutat Res. 1982 Mar;101(1):1–10. doi: 10.1016/0165-1218(82)90159-8. [DOI] [PubMed] [Google Scholar]
  30. Rosenkranz H. S., McCoy E. C., Sanders D. R., Butler M., Kiriazides D. K., Mermelstein R. Nitropyrenes: isolation, identificaton, and reduction of mutagenic impurities in carbon black and toners. Science. 1980 Aug 29;209(4460):1039–1043. doi: 10.1126/science.6996095. [DOI] [PubMed] [Google Scholar]
  31. Rosenkranz H. S., Mermelstein R. Mutagenicity and genotoxicity of nitroarenes. All nitro-containing chemicals were not created equal. Mutat Res. 1983 Apr;114(3):217–267. doi: 10.1016/0165-1110(83)90034-9. [DOI] [PubMed] [Google Scholar]
  32. Scheline R. R. Metabolism of foreign compounds by gastrointestinal microorganisms. Pharmacol Rev. 1973 Dec;25(4):451–523. [PubMed] [Google Scholar]
  33. Tokiwa H., Nakagawa R., Ohnishi Y. Mutagenic assay of aromatic nitro compounds with Salmonella typhimurium. Mutat Res. 1981 Jul-Sep;91(4-5):321–325. doi: 10.1016/0165-7992(81)90008-7. [DOI] [PubMed] [Google Scholar]
  34. Wei E. T., Shu H. P. Nitroaromatic carcinogens in diesel soot: a review of laboratory findings. Am J Public Health. 1983 Sep;73(9):1085–1088. doi: 10.2105/ajph.73.9.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wislocki P. G., Bagan E. S., Lu A. Y., Dooley K. L., Fu P. P., Han-Hsu H., Beland F. A., Kadlubar F. F. Tumorigenicity of nitrated derivatives of pyrene, benz[a]anthracene, chrysene and benzo[a]pyrene in the newborn mouse assay. Carcinogenesis. 1986 Aug;7(8):1317–1322. doi: 10.1093/carcin/7.8.1317. [DOI] [PubMed] [Google Scholar]
  36. Zijlstra J. B., Beukema J., Wolthers B. G., Byrne B. M., Groen A., Dankert J. Pretreatment methods prior to gaschromatographic analysis of volatile fatty acids from faecal samples. Clin Chim Acta. 1977 Jul 15;78(2):243–250. doi: 10.1016/0009-8981(77)90312-6. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES