Abstract
Molasses is widely used as a substrate for commercial yeast production. The complete hydrolysis of raffinose, which is present in beet molasses, by Saccharomyces strains requires the secretion of α-galactosidase, in addition to the secretion of invertase. Raffinose is not completely utilized by commercially available yeast strains used for baking, which are Mel−. In this study we integrated the yeast MEL1 gene, which codes for α-galactosidase, into a commercial mel0 baker's yeast strain. The Mel+ phenotype of the new strain was stable. The MEL1 gene was expressed when the new Mel+ baker's yeast was grown in molasses medium under conditions similar to those used for baker's yeast production at commercial factories. The α-galactosidase produced by this novel baker's yeast strain hydrolyzed all the melibiose that normally accumulates in the growth medium. As a consequence, additional carbohydrate was available to the yeasts for growth. The new strain also produced considerably more α-galactosidase than did a wild-type Mel+ strain and may prove useful for commercial production of α-galactosidase.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Broach J. R., Strathern J. N., Hicks J. B. Transformation in yeast: development of a hybrid cloning vector and isolation of the CAN1 gene. Gene. 1979 Dec;8(1):121–133. doi: 10.1016/0378-1119(79)90012-x. [DOI] [PubMed] [Google Scholar]
- Buckholz R. G., Adams B. G. Induction and genetics of two alpha-galactosidase activities in Saccharomyces cerevisiae. Mol Gen Genet. 1981;182(1):77–81. doi: 10.1007/BF00422770. [DOI] [PubMed] [Google Scholar]
- Hinnen A., Hicks J. B., Fink G. R. Transformation of yeast. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1929–1933. doi: 10.1073/pnas.75.4.1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hu N., Messing J. The making of strand-specific M13 probes. Gene. 1982 Mar;17(3):271–277. doi: 10.1016/0378-1119(82)90143-3. [DOI] [PubMed] [Google Scholar]
- Johnston S. A., Hopper J. E. Isolation of the yeast regulatory gene GAL4 and analysis of its dosage effects on the galactose/melibiose regulon. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6971–6975. doi: 10.1073/pnas.79.22.6971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kew O. M., Douglas H. C. Genetic co-regulation of galactose and melibiose utilization in Saccharomyces. J Bacteriol. 1976 Jan;125(1):33–41. doi: 10.1128/jb.125.1.33-41.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindegren C. C., Spiegelman S., Lindegren G. Mendelian Inheritance of Adaptive Enzymes. Proc Natl Acad Sci U S A. 1944 Nov 15;30(11):346–352. doi: 10.1073/pnas.30.11.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mahoney L. T., Marvin W. J., Jr, Atkins D. L., Clark E. B., Lauer R. M. Pacemaker management for acute onset of heart block in childhood. J Pediatr. 1985 Aug;107(2):207–211. doi: 10.1016/s0022-3476(85)80126-8. [DOI] [PubMed] [Google Scholar]
- Moreno F., Herrero P., Parra F., Gascón S. Invertase and alpha-galactosidase synthesis by yeast. Cell Mol Biol Incl Cyto Enzymol. 1979;25(1):1–6. [PubMed] [Google Scholar]
- Post-Beittenmiller M. A., Hamilton R. W., Hopper J. E. Regulation of basal and induced levels of the MEL1 transcript in Saccharomyces cerevisiae. Mol Cell Biol. 1984 Jul;4(7):1238–1245. doi: 10.1128/mcb.4.7.1238. [DOI] [PMC free article] [PubMed] [Google Scholar]

