Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1988 Jan;54(1):245–249. doi: 10.1128/aem.54.1.245-249.1988

Construction of a Stable α-Galactosidase-Producing Baker's Yeast Strain

Pirkko L Liljeström-Suominen 1,*, Vesa Joutsjoki 1, Matti Korhola 1
PMCID: PMC202428  PMID: 16347529

Abstract

Molasses is widely used as a substrate for commercial yeast production. The complete hydrolysis of raffinose, which is present in beet molasses, by Saccharomyces strains requires the secretion of α-galactosidase, in addition to the secretion of invertase. Raffinose is not completely utilized by commercially available yeast strains used for baking, which are Mel. In this study we integrated the yeast MEL1 gene, which codes for α-galactosidase, into a commercial mel0 baker's yeast strain. The Mel+ phenotype of the new strain was stable. The MEL1 gene was expressed when the new Mel+ baker's yeast was grown in molasses medium under conditions similar to those used for baker's yeast production at commercial factories. The α-galactosidase produced by this novel baker's yeast strain hydrolyzed all the melibiose that normally accumulates in the growth medium. As a consequence, additional carbohydrate was available to the yeasts for growth. The new strain also produced considerably more α-galactosidase than did a wild-type Mel+ strain and may prove useful for commercial production of α-galactosidase.

Full text

PDF
245

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Broach J. R., Strathern J. N., Hicks J. B. Transformation in yeast: development of a hybrid cloning vector and isolation of the CAN1 gene. Gene. 1979 Dec;8(1):121–133. doi: 10.1016/0378-1119(79)90012-x. [DOI] [PubMed] [Google Scholar]
  2. Buckholz R. G., Adams B. G. Induction and genetics of two alpha-galactosidase activities in Saccharomyces cerevisiae. Mol Gen Genet. 1981;182(1):77–81. doi: 10.1007/BF00422770. [DOI] [PubMed] [Google Scholar]
  3. Hinnen A., Hicks J. B., Fink G. R. Transformation of yeast. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1929–1933. doi: 10.1073/pnas.75.4.1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hu N., Messing J. The making of strand-specific M13 probes. Gene. 1982 Mar;17(3):271–277. doi: 10.1016/0378-1119(82)90143-3. [DOI] [PubMed] [Google Scholar]
  5. Johnston S. A., Hopper J. E. Isolation of the yeast regulatory gene GAL4 and analysis of its dosage effects on the galactose/melibiose regulon. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6971–6975. doi: 10.1073/pnas.79.22.6971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kew O. M., Douglas H. C. Genetic co-regulation of galactose and melibiose utilization in Saccharomyces. J Bacteriol. 1976 Jan;125(1):33–41. doi: 10.1128/jb.125.1.33-41.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lindegren C. C., Spiegelman S., Lindegren G. Mendelian Inheritance of Adaptive Enzymes. Proc Natl Acad Sci U S A. 1944 Nov 15;30(11):346–352. doi: 10.1073/pnas.30.11.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mahoney L. T., Marvin W. J., Jr, Atkins D. L., Clark E. B., Lauer R. M. Pacemaker management for acute onset of heart block in childhood. J Pediatr. 1985 Aug;107(2):207–211. doi: 10.1016/s0022-3476(85)80126-8. [DOI] [PubMed] [Google Scholar]
  9. Moreno F., Herrero P., Parra F., Gascón S. Invertase and alpha-galactosidase synthesis by yeast. Cell Mol Biol Incl Cyto Enzymol. 1979;25(1):1–6. [PubMed] [Google Scholar]
  10. Post-Beittenmiller M. A., Hamilton R. W., Hopper J. E. Regulation of basal and induced levels of the MEL1 transcript in Saccharomyces cerevisiae. Mol Cell Biol. 1984 Jul;4(7):1238–1245. doi: 10.1128/mcb.4.7.1238. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES