Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1988 Jan;54(1):264–267. doi: 10.1128/aem.54.1.264-267.1988

Transformation of Clostridium perfringens L forms with shuttle plasmid DNA.

D E Mahony 1, J A Mader 1, J R Dubel 1
PMCID: PMC202431  PMID: 2894199

Abstract

L-form (L-phase) cultures of Clostridium perfringens were tested for their transformability with plasmid DNA. Three L-form strains were transformable, but one, strain L-13, was superior to the others. This strain was easily and reproducibly transformed with previously described shuttle vectors which were derived from either C. perfringens or Escherichia coli. Strain L-13 was transformable by a variety of methods, and a new micromethod worked well under both aerobic and anaerobic conditions. The maximal number of transformants was attained after strain L-13 was exposed for 4 h to the transforming DNA and polyethylene glycol. Viable counts determined in tubes of semisolid brain heart infusion medium containing 10% sucrose, with or without 2 micrograms of tetracycline per ml, showed a transformation rate of 3.9 X 10(-5) (transformants per viable cells).

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham L. J., Rood J. I. Cloning and analysis of the Clostridium perfringens tetracycline resistance plasmid, pCW3. Plasmid. 1985 May;13(3):155–162. doi: 10.1016/0147-619x(85)90038-1. [DOI] [PubMed] [Google Scholar]
  2. Abraham L. J., Rood J. I. Identification of Tn4451 and Tn4452, chloramphenicol resistance transposons from Clostridium perfringens. J Bacteriol. 1987 Apr;169(4):1579–1584. doi: 10.1128/jb.169.4.1579-1584.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Garnier T., Cole S. T. Characterization of a bacteriocinogenic plasmid from Clostridium perfringens and molecular genetic analysis of the bacteriocin-encoding gene. J Bacteriol. 1986 Dec;168(3):1189–1196. doi: 10.1128/jb.168.3.1189-1196.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Heefner D. L., Squires C. H., Evans R. J., Kopp B. J., Yarus M. J. Transformation of Clostridium perfringens. J Bacteriol. 1984 Aug;159(2):460–464. doi: 10.1128/jb.159.2.460-464.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Mahony D. E., Kalz G. G. A temperate bacteriophage of Clostridium perfringens. Can J Microbiol. 1968 Oct;14(10):1085–1093. doi: 10.1139/m68-183. [DOI] [PubMed] [Google Scholar]
  6. Mahony D. E., Li A. Comparative study of ten bacteriocins of Clostridium perfringens. Antimicrob Agents Chemother. 1978 Dec;14(6):886–892. doi: 10.1128/aac.14.6.886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mahony D. E., Moore T. I. Stable L-forms of Clostridium perfringens and their growth on glass surfaces. Can J Microbiol. 1976 Jul;22(7):953–959. doi: 10.1139/m76-138. [DOI] [PubMed] [Google Scholar]
  8. Mahony D. E. Stable L-forms of Clostridium perfringens: growth, toxin production, and pathogenicity. Infect Immun. 1977 Jan;15(1):19–25. doi: 10.1128/iai.15.1.19-25.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Roberts I., Holmes W. M., Hylemon P. B. Development of a new shuttle plasmid system for Escherichia coli and Clostridium perfringens. Appl Environ Microbiol. 1988 Jan;54(1):268–270. doi: 10.1128/aem.54.1.268-270.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Squires C. H., Heefner D. L., Evans R. J., Kopp B. J., Yarus M. J. Shuttle plasmids for Escherichia coli and Clostridium perfringens. J Bacteriol. 1984 Aug;159(2):465–471. doi: 10.1128/jb.159.2.465-471.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES