Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1988 Feb;54(2):288–293. doi: 10.1128/aem.54.2.288-293.1988

Isolation of a methyl parathion-degrading Pseudomonas sp. that possesses DNA homologous to the opd gene from a Flavobacterium sp.

G R Chaudhry 1, A N Ali 1, W B Wheeler 1
PMCID: PMC202445  PMID: 3355128

Abstract

Two mixed bacterial cultures isolated by soil enrichment were capable of utilizing methyl parathion (O,O-dimethyl O-p-nitrophenylphosphorothioate) and parathion (O,O-diethyl O-p-nitrophenylphosphorothioate) as a sole source of carbon. Four isolates from these mixed cultures lost their ability to utilize the pesticides independently in transfers subsequent to the initial isolation. One member of the mixed cultures, a Pseudomonas sp., however, hydrolyzed the pesticides to p-nitrophenol but required glucose or another carbon source for growth. The crude cell extracts prepared from this bacterium showed an optimum pH range from 7.5 to 9.5 for the enzymatic hydrolysis. Maximum enzymatic activity occurred between 35 and 40 degrees C. The enzyme activity was not inhibited by heavy metals, EDTA, or NaN3. Another isolate from the mixed cultures, a Flavobacterium sp., used p-nitrophenol for growth and degraded it to nitrite. Nitrite was assimilated into the cells under conditions during which the nitrogen source was excluded from the minimal growth medium. The hybridization data showed that the DNAs from a Pseudomonas sp. and from the mixed culture had homology with the opd (organophosphate degradation) gene from a previously reported parathion-hydrolyzing bacterium, Flavobacterium sp. The use of the opd gene as a probe may accelerate progress toward understanding the complex interactions of soil microorganisms with parathions.

Full text

PDF
288

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Franklin F. C., Lehrbach P. R., Lurz R., Rueckert B., Bagdasarian M., Timmis K. N. Localization and functional analysis of transposon mutations in regulatory genes of the TOL catabolic pathway. J Bacteriol. 1983 May;154(2):676–685. doi: 10.1128/jb.154.2.676-685.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gaines T. B. Acute toxicity of pesticides. Toxicol Appl Pharmacol. 1969 May;14(3):515–534. doi: 10.1016/0041-008x(69)90013-1. [DOI] [PubMed] [Google Scholar]
  4. Inouye S., Ebina Y., Nakazawa A., Nakazawa T. Nucleotide sequence surrounding transcription initiation site of xylABC operon on TOL plasmid of Pseudomonas putida. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1688–1691. doi: 10.1073/pnas.81.6.1688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kafatos F. C., Jones C. W., Efstratiadis A. Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucleic Acids Res. 1979 Nov 24;7(6):1541–1552. doi: 10.1093/nar/7.6.1541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. Laveglia J., Dahm P. A. Degradation of organophosphorus and carbamate insecticides in the soil and by soil microorganisms. Annu Rev Entomol. 1977;22:483–513. doi: 10.1146/annurev.en.22.010177.002411. [DOI] [PubMed] [Google Scholar]
  8. Mulbry W. W., Karns J. S., Kearney P. C., Nelson J. O., McDaniel C. S., Wild J. R. Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by southern hybridization with opd from Pseudomonas diminuta. Appl Environ Microbiol. 1986 May;51(5):926–930. doi: 10.1128/aem.51.5.926-930.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Munnecke D. M. Enzymatic hydrolysis of organophosphate insecticides, a possible pesticide disposal method. Appl Environ Microbiol. 1976 Jul;32(1):7–13. doi: 10.1128/aem.32.1.7-13.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Munnecke D. M., Hsieh D. P. Microbial decontamination of parathion and p-nitrophenol in aqueous media. Appl Microbiol. 1974 Aug;28(2):212–217. doi: 10.1128/am.28.2.212-217.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Munnecke D. M., Hsieh D. P. Pathways of microbial metabolism of parathion. Appl Environ Microbiol. 1976 Jan;31(1):63–69. doi: 10.1128/aem.31.1.63-69.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Schell M. A. Cloning and expression in Escherichia coli of the naphthalene degradation genes from plasmid NAH7. J Bacteriol. 1983 Feb;153(2):822–829. doi: 10.1128/jb.153.2.822-829.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Serdar C. M., Gibson D. T., Munnecke D. M., Lancaster J. H. Plasmid Involvement in Parathion Hydrolysis by Pseudomonas diminuta. Appl Environ Microbiol. 1982 Jul;44(1):246–249. doi: 10.1128/aem.44.1.246-249.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Siddaramappa R., Rajaram K. P., Sethunathan N. Degradation of parathion by bacteria isolated from flooded soil. Appl Microbiol. 1973 Dec;26(6):846–849. doi: 10.1128/am.26.6.846-849.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES