Abstract
The effect of 5-fluoro-2′-deoxyuridine (FdUrd) on [methyl-3H] thymidine incorporation by bacterioplankton populations in subtropical freshwater, estuarine, and oceanic environments was examined. In estuarine waters, intracellular isotope dilution was inhibited by FdUrd, which enabled us to estimate both intracellular and extracellular isotope dilution. In 2 of 10 cases, extracellular isotope dilution was significant. At low concentrations of [methyl-3H]thymidine or [6-3H]thymidine, FdUrd completely inhibited incorporation of radioactivity into protein and RNA. At high concentrations of [3H]thymidine, however, FdUrd had little effect on labeling patterns. The dihydrofolate reductase inhibitors amethopterin and trimethoprim had no effect on macromolecular labeling patterns. These results suggest that thymidylate synthase is not involved in nonspecific labeling and that FdUrd inhibits nonspecific labeling by blocking some other enzyme involved in thymidine catabolism. In oligotrophic oceanic and freshwater samples, FdUrd did not inhibit intracellular isotope dilution or [3H]thymidine labeling of protein and RNA, but caused some inhibition of [3H]thymidine incorporation into DNA. The ability of FdUrd to inhibit nonspecific macromolecular labeling during [3H]thymidine incorporation was significantly correlated (r = 0.84) with total thymidine incorporation (in picomoles per liter per hour). The results are discussed in terms of applications of FdUrd to routine bacterial production measurements and the general assumptions of [3H]thymidine incorporation.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bell R. T. Further Verification of the Isotope Dilution Approach for Estimating the Degree of Participation of [H]thymidine in DNA Synthesis in Studies of Aquatic Bacterial Production. Appl Environ Microbiol. 1986 Nov;52(5):1212–1214. doi: 10.1128/aem.52.5.1212-1214.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Commerford S. L., Joel D. D. Iododeoxyuridine administered to mice is de-iodinated and incorporated into DNA primarily as thymidylate. Biochem Biophys Res Commun. 1979 Jan 15;86(1):112–118. doi: 10.1016/0006-291x(79)90388-7. [DOI] [PubMed] [Google Scholar]
- Danenberg P. V., Lockshin A. Fluorinated pyrimidines as tight-binding inhibitors of thymidylate synthetase. Pharmacol Ther. 1981;13(1):69–90. doi: 10.1016/0163-7258(81)90068-1. [DOI] [PubMed] [Google Scholar]
- Deflaun M. F., Paul J. H., Davis D. Simplified method for dissolved DNA determination in aquatic environments. Appl Environ Microbiol. 1986 Oct;52(4):654–659. doi: 10.1128/aem.52.4.654-659.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fallon R. D., Newell S. Y. Thymidine Incorporation by the Microbial Community of Standing Dead Spartina alterniflora. Appl Environ Microbiol. 1986 Nov;52(5):1206–1208. doi: 10.1128/aem.52.5.1206-1208.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jeffrey W. H., Paul J. H. Activity of an Attached and Free-Living Vibrio sp. as Measured by Thymidine Incorporation, p-Iodonitrotetrazolium Reduction, and ATP/DNA Ratios. Appl Environ Microbiol. 1986 Jan;51(1):150–156. doi: 10.1128/aem.51.1.150-156.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karl D. M. Selected nucleic Acid precursors in studies of aquatic microbial ecology. Appl Environ Microbiol. 1982 Oct;44(4):891–902. doi: 10.1128/aem.44.4.891-902.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin D. S., Stolfi R. L., Sawyer R. C., Nayak R., Spiegelman S., Young C. W., Woodcock T. An overview of thymidine. Cancer. 1980 Mar 15;45(5 Suppl):1117–1128. doi: 10.1002/1097-0142(19800315)45:5+<1117::aid-cncr2820451316>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
- Paul J. H., Jeffrey W. H., DeFlaun M. F. Dynamics of extracellular DNA in the marine environment. Appl Environ Microbiol. 1987 Jan;53(1):170–179. doi: 10.1128/aem.53.1.170-179.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollard P. C., Moriarty D. J. Validity of the tritiated thymidine method for estimating bacterial growth rates: measurement of isotope dilution during DNA synthesis. Appl Environ Microbiol. 1984 Dec;48(6):1076–1083. doi: 10.1128/aem.48.6.1076-1083.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RAZZELL W. E., CASSHYAP P. SUBSTRATE SPECIFICITY AND INDUCTION OF THYMIDINE PHOSPHORYLASE IN ESCHERICHIA COLI. J Biol Chem. 1964 Jun;239:1789–1793. [PubMed] [Google Scholar]
- Robarts R. D., Wicks R. J., Sephton L. M. Spatial and Temporal Variations in Bacterial Macromolecule Labeling with [methyl-H]Thymidine in a Hypertrophic Lake. Appl Environ Microbiol. 1986 Dec;52(6):1368–1373. doi: 10.1128/aem.52.6.1368-1373.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]