Abstract
Beach replenishment is a widely used method of controlling coastal erosion. To reduce erosional losses from wind, beach grasses are often planted on the replenishment sands. However, there is little information on the microbial populations in this material that may affect plant establishment and growth. The objectives of this research were to document changes in the populations of vesicular-arbuscular mycorrhizal (VAM) fungi and other soil microorganisms in replenishment materials and to determine whether roots of transplanted beach grasses become colonized by beneficial microbes. The study was conducted over a 2-year period on a replenishment project in northeastern Florida. Three sampling locations were established at 1-km intervals along the beach. Each location consisted of three plots: an established dune, replenishment sand planted with Uniola paniculata and Panicum sp., and replenishment sand left unplanted. Fungal and bacterial populations increased rapidly in the rhizosphere of beach grasses in the planted plots. However, no bacteria were recovered that could fix significant amounts of N2. The VAM fungi established slowly on the transplanted grasses. Even after two growing seasons, levels of root colonization and sporulation were significantly below those found in the established dune. There was a shift in the dominant VAM fungi found in the planted zone with respect to those in the established dunes. The most abundant species recovered from the established dunes were Glomus deserticola, followed by Acaulospora scrobiculata and Scutellospora weresubiae. The VAM fungi that colonized the planted zone most rapidly were Glomus globiferum, followed by G. deserticola and Glomus aggregatum.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Murphy P. M. Non-symbiotic nitrogen-fixing bacteria in Irish soils. Proc R Ir Acad B. 1975;75(22):453–464. [PubMed] [Google Scholar]
- Rennie R. J. A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils. Can J Microbiol. 1981 Jan;27(1):8–14. doi: 10.1139/m81-002. [DOI] [PubMed] [Google Scholar]