Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1988 Feb;54(2):548–554. doi: 10.1128/aem.54.2.548-554.1988

Aerobic biomineralization of alpha-hexachlorocyclohexane in contaminated soil.

A Bachmann 1, W de Bruin 1, J C Jumelet 1, H H Rijnaarts 1, A J Zehnder 1
PMCID: PMC202489  PMID: 2451469

Abstract

The factors identified to be important for the aerobic biodegradation of alpha-hexachlorocyclohexane (alpha-HCH) in a soil slurry are temperature, auxiliary carbon source, substrate concentration, and soil inhomogeneities. Temperatures in the range of 20 to 30 degrees C were determined to be most favorable for biodegradation of alpha-HCH. No alpha-HCH biodegradation was detected at temperatures below 4 degrees C and above 40 degrees C. The addition of auxiliary organic carbon compounds showed repressive effects on alpha-HCH biomineralization. Increased oxygen partial pressures reduced the repressive effects of added auxiliary organic carbon compounds. A linear relationship between alpha-HCH concentration and its conversion rate was found in a Lineweaver-Burk plot. Inhomogeneities such as clumping of alpha-HCH significantly affected its biodegradation. Inhomogeneity as an influence on biodegradation has not drawn sufficient attention in the past, even though it certainly has affected both laboratory studies and the application of biotechnological methods to clean up contaminated sites. On the basis of metabolites detected during degradation experiments, the initial steps of aerobic alpha-HCH bioconversion in a soil slurry are proposed.

Full text

PDF
548

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachmann A., Walet P., Wijnen P., de Bruin W., Huntjens J. L., Roelofsen W., Zehnder A. J. Biodegradation of alpha- and beta-hexachlorocyclohexane in a soil slurry under different redox conditions. Appl Environ Microbiol. 1988 Jan;54(1):143–149. doi: 10.1128/aem.54.1.143-149.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Haider K., Jagnow G. Abbau von 14C-, 3H- und 36Cl-markiertem gamma-Hexachlorcyclohexan durch anaerobe Bodenmikroorganismen. Arch Microbiol. 1975 Jun 22;104(2):113–121. doi: 10.1007/BF00447310. [DOI] [PubMed] [Google Scholar]
  3. Haider K., Jagnow G., Kohnen R., Lim S. U. Abbau chlorierter Benzole, Phenole und Cyclohexan-Derivate durch Benzol und Phenol verwertende Bodenbakterien unter aeroben Bedingungen. Arch Microbiol. 1974 Mar 7;96(3):183–200. doi: 10.1007/BF00590175. [DOI] [PubMed] [Google Scholar]
  4. Heritage A. D., MacRae I. C. Degradation of lindane by cell-free preparations of Clostridium sphenoides. Appl Environ Microbiol. 1977 Aug;34(2):222–224. doi: 10.1128/aem.34.2.222-224.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Heritage A. D., Rae I. C. Identification of intermediates formed during the degradation of hexachlorocyclohexanes by Clostridium sphenoides. Appl Environ Microbiol. 1977 Jun;33(6):1295–1297. doi: 10.1128/aem.33.6.1295-1297.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hill D. W., McCarty P. L. Anaerobic degradation of selected chlorinated hydrocarbon pesticides. J Water Pollut Control Fed. 1967 Aug;39(8):1259–1277. [PubMed] [Google Scholar]
  7. Jagnow G., Haider K., Ellwardt P. C. Anaerobic dechlorination and degradation of hexachlorocyclohexane isomers by anaerobic and facultative anaerobic bacteria. Arch Microbiol. 1977 Dec 15;115(3):285–292. doi: 10.1007/BF00446454. [DOI] [PubMed] [Google Scholar]
  8. MacRae I. C., Raghu K., Bautista E. M. Anaerobic degradation of the insecticide lindane by Clostridium sp. Nature. 1969 Mar 1;221(5183):859–860. doi: 10.1038/221859a0. [DOI] [PubMed] [Google Scholar]
  9. Macholz R. M., Kujawa M. Recent state of lindane metabolism. Part III. Residue Rev. 1985;94:119–149. doi: 10.1007/978-1-4612-5104-0_4. [DOI] [PubMed] [Google Scholar]
  10. Ohisa N., Kurihara N., Nakajima M. ATP synthesis associated with the conversion of hexachlorocyclohexane related compounds. Arch Microbiol. 1982 Jun;131(4):330–333. doi: 10.1007/BF00411180. [DOI] [PubMed] [Google Scholar]
  11. Ohisa N., Yamaguchi M., Kurihara N. Lindane degradation by cell-free extracts of Clostridium rectum. Arch Microbiol. 1980 Apr;125(3):221–225. doi: 10.1007/BF00446880. [DOI] [PubMed] [Google Scholar]
  12. Schraa G., Boone M. L., Jetten M. S., van Neerven A. R., Colberg P. J., Zehnder A. J. Degradation of 1,4-dichlorobenzene by Alcaligenes sp. strain A175. Appl Environ Microbiol. 1986 Dec;52(6):1374–1381. doi: 10.1128/aem.52.6.1374-1381.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sethunathan N., Bautista E. M., Yoshida T. Degradation of benzene hexachloride by a soil bacterium. Can J Microbiol. 1969 Dec;15(12):1349–1354. doi: 10.1139/m69-245. [DOI] [PubMed] [Google Scholar]
  14. Tu C. M. Utilization and degradation of lindane by soil microorganisms. Arch Microbiol. 1976 Jul;108(3):259–263. doi: 10.1007/BF00454850. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES