Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1988 Mar;54(3):649–654. doi: 10.1128/aem.54.3.649-654.1988

Factors promoting survival of bacteria in chlorinated water supplies.

M W LeChevallier 1, C D Cawthon 1, R G Lee 1
PMCID: PMC202520  PMID: 3288119

Abstract

Results of our experiments showed that the attachment of bacteria to surfaces provided the greatest increase in disinfection resistance. Attachment of unencapsulated Klebsiella pneumoniae grown in medium with high levels of nutrients to glass microscope slides afforded the microorganisms as much as a 150-fold increase in disinfection resistance. Other mechanisms which increased disinfection resistance included the age of the biofilm, bacterial encapsulation, and previous growth conditions (e.g., growth medium and growth temperature). These factors increased resistance to chlorine from 2- to 10-fold. The choice of disinfectant residual was shown to influence the type of resistance mechanism observed. Disinfection by free chlorine was affected by surfaces, age of the biofilm, encapsulation, and nutrient effects. Disinfection by monochloramine, however, was only affected by surfaces. Importantly, results showed that these resistance mechanisms were multiplicative (i.e., the resistance provided by one mechanism could be multiplied by the resistance provided by a second mechanism).

Full text

PDF
649

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong J. L., Calomiris J. J., Seidler R. J. Selection of antibiotic-resistant standard plate count bacteria during water treatment. Appl Environ Microbiol. 1982 Aug;44(2):308–316. doi: 10.1128/aem.44.2.308-316.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berg J. D., Matin A., Roberts P. V. Effect of antecedent growth conditions on sensitivity of Escherichia coli to chlorine dioxide. Appl Environ Microbiol. 1982 Oct;44(4):814–819. doi: 10.1128/aem.44.4.814-819.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown M. J., Lester J. N. Comparison of bacterial extracellular polymer extraction methods. Appl Environ Microbiol. 1980 Aug;40(2):179–185. doi: 10.1128/aem.40.2.179-185.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Camper A. K., LeChevallier M. W., Broadaway S. C., McFeters G. A. Bacteria associated with granular activated carbon particles in drinking water. Appl Environ Microbiol. 1986 Sep;52(3):434–438. doi: 10.1128/aem.52.3.434-438.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carson L. A., Favero M. S., Bond W. W., Petersen N. J. Factors affecting comparative resistance of naturally occurring and subcultured Pseudomonas aeruginosa to disinfectants. Appl Microbiol. 1972 May;23(5):863–869. doi: 10.1128/am.23.5.863-869.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Harakeh M. S., Berg J. D., Hoff J. C., Matin A. Susceptibility of chemostat-grown Yersinia enterocolitica and Klebsiella pneumoniae to chlorine dioxide. Appl Environ Microbiol. 1985 Jan;49(1):69–72. doi: 10.1128/aem.49.1.69-72.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hejkal T. W., Wellings F. M., LaRock P. A., Lewis A. L. Survival of poliovirus within organic solids during chlorination. Appl Environ Microbiol. 1979 Jul;38(1):114–118. doi: 10.1128/aem.38.1.114-118.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Herson D. S., McGonigle B., Payer M. A., Baker K. H. Attachment as a factor in the protection of Enterobacter cloacae from chlorination. Appl Environ Microbiol. 1987 May;53(5):1178–1180. doi: 10.1128/aem.53.5.1178-1180.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kuchta J. M., States S. J., McGlaughlin J. E., Overmeyer J. H., Wadowsky R. M., McNamara A. M., Wolford R. S., Yee R. B. Enhanced chlorine resistance of tap water-adapted Legionella pneumophila as compared with agar medium-passaged strains. Appl Environ Microbiol. 1985 Jul;50(1):21–26. doi: 10.1128/aem.50.1.21-26.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LeChevallier M. W., Babcock T. M., Lee R. G. Examination and characterization of distribution system biofilms. Appl Environ Microbiol. 1987 Dec;53(12):2714–2724. doi: 10.1128/aem.53.12.2714-2724.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LeChevallier M. W., Evans T. M., Seidler R. J. Effect of turbidity on chlorination efficiency and bacterial persistence in drinking water. Appl Environ Microbiol. 1981 Jul;42(1):159–167. doi: 10.1128/aem.42.1.159-167.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LeChevallier M. W., Hassenauer T. S., Camper A. K., McFeters G. A. Disinfection of bacteria attached to granular activated carbon. Appl Environ Microbiol. 1984 Nov;48(5):918–923. doi: 10.1128/aem.48.5.918-923.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Leclerc H., Mizon F. Eaux d'alimentation et bactéries résistantes aux antibiotiques. Incidences sur les normes. Rev Epidemiol Sante Publique. 1978;26(2):137–146. [PubMed] [Google Scholar]
  14. Levy R. V., Cheetham R. D., Davis J., Winer G., Hart F. L. Novel method for studying the public health significance of macroinvertebrates occurring in potable water. Appl Environ Microbiol. 1984 May;47(5):889–894. doi: 10.1128/aem.47.5.889-894.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Murray G. E., Tobin R. S., Junkins B., Kushner D. J. Effect of chlorination on antibiotic resistance profiles of sewage-related bacteria. Appl Environ Microbiol. 1984 Jul;48(1):73–77. doi: 10.1128/aem.48.1.73-77.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ridgway H. F., Olson B. H. Chlorine resistance patterns of bacteria from two drinking water distribution systems. Appl Environ Microbiol. 1982 Oct;44(4):972–987. doi: 10.1128/aem.44.4.972-987.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES