Abstract
The minimal nutritional growth requirements were determined for strains Okra B and Iwanai E, which are representatives of groups I and II, respectively, of Clostridium botulinum. These type B and E strains differed considerably in their nutrient requirements. The organic growth factors required in high concentrations by the Okra B strain (group I) were arginine and phenylalanine. Low concentrations (less than or equal to 0.1 g/liter) of eight amino acids (methionine, leucine, valine, isoleucine, glycine, histidine, tryptophan, and tyrosine) and of five vitamins (pyridoxamine, p-aminobenzoic acid, biotin, nicotinic acid, and thiamine) were also essential for biosynthesis. The 10 required amino acids could be replaced by intact protein of known composition by virtue of the bacterium's ability to synthesize proteases. Glucose or other carbohydrates were not essential for Okra B, although they did stimulate growth. Quantitatively, the most essential nutrients for Okra B were arginine and phenylalanine. In contrast, the nonproteolytic strain, Iwanai E (group II), did not require either arginine or phenylalanine. It required glucose or another carbohydrate energy source for growth and did not utilize arginine or intact protein as a substitute source of energy. Iwanai E utilized ammonia as a nitrogen source, although growth was stimulated significantly by organic nitrogenous nutrients, especially glutamate and asparagine. Iwanai E also required biosynthesis levels of seven amino acids (histidine, isoleucine, leucine, tryptophan, tyrosine, valine, and serine), adenine, and six vitamins (biotin, thiamine, pyridoxamine, folic acid, choline, and nicotinamide). Calcium pantothenate also stimulated growth. On the basis of the nutritional requirements, chemically defined minimal media have been constructed for C. botulinum serotypes A, B, E, and F (proteolytic).(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barker H. A. Amino acid degradation by anaerobic bacteria. Annu Rev Biochem. 1981;50:23–40. doi: 10.1146/annurev.bi.50.070181.000323. [DOI] [PubMed] [Google Scholar]
- Costilow R. N., Cooper D. Identity of proline dehydrogenase and delta1-pyrroline-5-carboxylic acid reductase in Clostridium sporogenes. J Bacteriol. 1978 Apr;134(1):139–146. doi: 10.1128/jb.134.1.139-146.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dasgupta B. R., Sugiyama H. Molecular forms of neurotoxins in proteolytic Clostridium botulinum type B cultures. Infect Immun. 1976 Sep;14(3):680–686. doi: 10.1128/iai.14.3.680-686.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GROSSOWICZ N., KINDLER S. H., MAGER J. Nutritional studies with the Clostridium botulinum group. J Gen Microbiol. 1956 Oct;15(2):386–393. doi: 10.1099/00221287-15-2-386. [DOI] [PubMed] [Google Scholar]
- Gullmar B., Molin N. Effect of choline on cell division of Clostridium botulinum type E. J Bacteriol. 1967 May;93(5):1734–1734. doi: 10.1128/jb.93.5.1734-.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gullmar B., Molin N. Effect of nutrients on physiological properties of Clostridium botulinum type E. J Bacteriol. 1967 Dec;94(6):1924–1929. doi: 10.1128/jb.94.6.1924-1929.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall J. D., McCroskey L. M., Pincomb B. J., Hatheway C. L. Isolation of an organism resembling Clostridium barati which produces type F botulinal toxin from an infant with botulism. J Clin Microbiol. 1985 Apr;21(4):654–655. doi: 10.1128/jcm.21.4.654-655.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hawirko R. Z., Naccarato C. A., Lee R. P., Maeba P. Y. Outgrowth and sporulation studies on Clostridium botulinum type E: influence of isoleucine. Can J Microbiol. 1979 Apr;25(4):522–527. doi: 10.1139/m79-076. [DOI] [PubMed] [Google Scholar]
- Holdeman L. V., Smith L. D. Study of the nutritional requirements and toxin production of Clostridium botulinum type F. Can J Microbiol. 1965 Dec;11(6):1009–1019. doi: 10.1139/m65-134. [DOI] [PubMed] [Google Scholar]
- Johnson J. L., Francis B. S. Taxonomy of the Clostridia: ribosomal ribonucleic acid homologies among the species. J Gen Microbiol. 1975 Jun;88(2):229–244. doi: 10.1099/00221287-88-2-229. [DOI] [PubMed] [Google Scholar]
- Lamanna C., Spero L., Schantz E. J. Dependence of time to death on molecular size of botulinum toxin. Infect Immun. 1970 Apr;1(4):423–424. doi: 10.1128/iai.1.4.423-424.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lovitt R. W., Morris J. G., Kell D. B. The growth and nutrition of Clostridium sporogenes NCIB 8053 in defined media. J Appl Bacteriol. 1987 Jan;62(1):71–80. doi: 10.1111/j.1365-2672.1987.tb02382.x. [DOI] [PubMed] [Google Scholar]
- MAGER J., KINDLER S. H., GROSSOWICZ N. Nutritional studies with Clostridium parabotulinum type A. J Gen Microbiol. 1954 Feb;10(1):130–141. doi: 10.1099/00221287-10-1-130. [DOI] [PubMed] [Google Scholar]
- Magasanik B. Genetic control of nitrogen assimilation in bacteria. Annu Rev Genet. 1982;16:135–168. doi: 10.1146/annurev.ge.16.120182.001031. [DOI] [PubMed] [Google Scholar]
- McCroskey L. M., Hatheway C. L., Fenicia L., Pasolini B., Aureli P. Characterization of an organism that produces type E botulinal toxin but which resembles Clostridium butyricum from the feces of an infant with type E botulism. J Clin Microbiol. 1986 Jan;23(1):201–202. doi: 10.1128/jcm.23.1.201-202.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mead G. C. The amino acid-fermenting clostridia. J Gen Microbiol. 1971 Jul;67(1):47–56. doi: 10.1099/00221287-67-1-47. [DOI] [PubMed] [Google Scholar]
- Mitruka B. M., Costilow R. N. Arginine and ornithine catabolism by Clostridium botulinum. J Bacteriol. 1967 Jan;93(1):295–301. doi: 10.1128/jb.93.1.295-301.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenberg E., Keller K. H., Dworkin M. Cell density-dependent growth of Myxococcus xanthus on casein. J Bacteriol. 1977 Feb;129(2):770–777. doi: 10.1128/jb.129.2.770-777.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schantz E. J., Sugiyama H. Toxic proteins produced by Clostridium botulinum. J Agric Food Chem. 1974 Jan-Feb;22(1):26–30. doi: 10.1021/jf60191a033. [DOI] [PubMed] [Google Scholar]
- Sugiyama H. Clostridium botulinum neurotoxin. Microbiol Rev. 1980 Sep;44(3):419–448. doi: 10.1128/mr.44.3.419-448.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yokosawa N., Tsuzuki K., Syuto B., Oguma K. Activation of Clostridium botulinum type E toxin purified by two different procedures. J Gen Microbiol. 1986 Jul;132(7):1981–1988. doi: 10.1099/00221287-132-7-1981. [DOI] [PubMed] [Google Scholar]