Abstract
Ethanol stimulated the leakage of amino acids and 260-nm-light-absorbing compounds from cells of Saccharomyces cerevisiae. The efflux followed first-order kinetics over an initial period. In the presence of lethal concentrations of ethanol, the efflux rates at 30 and 36°C were an exponential function of ethanol concentration: keX = keXmeE (X-Xm), where keX and keXm are the efflux rate constants, respectively, in the presence of a concentration X of ethanol or the minimal concentration of ethanol, Xm, above which the equation was applicable, coincident with the minimal lethal concentration of ethanol. E is the enhancement constant. At 36°C, as compared with the corresponding values at 30°C, the efflux rates were higher and the minimal concentration of ethanol (Xm) was lower. The exponential constants for the enhancement of the rate of leakage (E) had similar values at 30 or 36°C and were of the same order of magnitude as the corresponding exponential constants for ethanol-induced death. Under isothermic conditions (30°C) and up to 22% (vol/vol) ethanol, the resistance to ethanol-induced leakage of 260-nm-light-absorbing compounds was found to be closely related with the ethanol tolerance of three strains of yeasts, Kluyveromyces marxianus, Saccharomyces cerevisiae, and Saccharomyces bayanus. The resistance to ethanol-induced leakage indicates the possible adoption of the present method for the rapid screening of ethanol-tolerant strains. The addition to a fermentation medium of the intracellular material obtained by ethanol permeabilization of yeast cells led to improvements in alcohol fermentation by S. cerevisiae and S. bayanus. The action of the intracellular material, by improving yeast ethanol tolerance, and the advantages of partially recycling the fermented medium after distillation were discussed.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allwood M. C., Russell A. D. Influence of ionic and nonionic materials on thermally-induced ribonucleic acid degradation and leakage in Staphylococcus aureus. J Pharm Sci. 1970 Feb;59(2):180–183. doi: 10.1002/jps.2600590208. [DOI] [PubMed] [Google Scholar]
- Allwood M. C., Russell A. D. Thermally induced ribonucleic acid degradation and leakage of substances from the metabolic pool in Staphylococcus aureus. J Bacteriol. 1968 Feb;95(2):345–349. doi: 10.1128/jb.95.2.345-349.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casey G. P., Ingledew W. M. Ethanol tolerance in yeasts. Crit Rev Microbiol. 1986;13(3):219–280. doi: 10.3109/10408418609108739. [DOI] [PubMed] [Google Scholar]
- Eddy A. A. Mechanisms of solute transport in selected eukaryotic micro-organisms. Adv Microb Physiol. 1982;23:1-78, 269-70. doi: 10.1016/s0065-2911(08)60335-5. [DOI] [PubMed] [Google Scholar]
- Gutknecht J., Tosteson D. C. Ionic peremability of thin lipid membranes. Effects of n-alkyl alcohols, polyvalent cations, and a secondary amine. J Gen Physiol. 1970 Mar;55(3):359–374. doi: 10.1085/jgp.55.3.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ingram L. O., Buttke T. M. Effects of alcohols on micro-organisms. Adv Microb Physiol. 1984;25:253–300. doi: 10.1016/s0065-2911(08)60294-5. [DOI] [PubMed] [Google Scholar]
- Lafon-Lafourcade S., Geneix C., Ribéreau-Gayon P. Inhibition of alcoholic fermentation of grape must by Fatty acids produced by yeasts and their elimination by yeast ghosts. Appl Environ Microbiol. 1984 Jun;47(6):1246–1249. doi: 10.1128/aem.47.6.1246-1249.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leão C., Van Uden N. Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta. 1984 Jul 11;774(1):43–48. doi: 10.1016/0005-2736(84)90272-4. [DOI] [PubMed] [Google Scholar]
- MOORE S., STEIN W. H. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J Biol Chem. 1954 Dec;211(2):907–913. [PubMed] [Google Scholar]
- Nash C. H., Sinclair N. A. Thermal injury and death in an obligately psychrophilic yeast, Candida nivalis. Can J Microbiol. 1968 Jun;14(6):691–697. doi: 10.1139/m68-115. [DOI] [PubMed] [Google Scholar]
- Osman Y. A., Ingram L. O. Mechanism of ethanol inhibition of fermentation in Zymomonas mobilis CP4. J Bacteriol. 1985 Oct;164(1):173–180. doi: 10.1128/jb.164.1.173-180.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STRANGE R. E., SHON M. EFFECTS OF THERMAL STRESS ON VIABILITY AND RIBONUCLEIC ACID OF AEROBACTER AEROGENES IN AQUEOUS SUSPENSION. J Gen Microbiol. 1964 Jan;34:99–114. doi: 10.1099/00221287-34-1-99. [DOI] [PubMed] [Google Scholar]
- Simões-Mendes B., Madeira-Lopes A., van Uden N. Kinetics of petite mutation and thermal death in Saccharomyces cerevisiae growing at superoptimal temperatures. Z Allg Mikrobiol. 1978;18(4):275–279. doi: 10.1002/jobm.3630180406. [DOI] [PubMed] [Google Scholar]
- VAN UDEN N., DO SOUSA L. C., FARINHA M. On the intestinal yeast flora of horses, sheep, goats and swine. J Gen Microbiol. 1958 Dec;19(3):435–445. doi: 10.1099/00221287-19-3-435. [DOI] [PubMed] [Google Scholar]
- Viegas C. A., Sá-Correia I., Novais J. M. Nutrient-Enhanced Production of Remarkably High Concentrations of Ethanol by Saccharomyces bayanus through Soy Flour Supplementation. Appl Environ Microbiol. 1985 Nov;50(5):1333–1335. doi: 10.1128/aem.50.5.1333-1335.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]