Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1988 Apr;54(4):972–978. doi: 10.1128/aem.54.4.972-978.1988

Transfer and Occurrence of Large Mercury Resistance Plasmids in River Epilithon

M J Bale 1,, J C Fry 1,*, M J Day 1
PMCID: PMC202582  PMID: 16347617

Abstract

In situ mating experiments were done in the River Taff, South Wales, United Kingdom, by using a natural mercury resistance plasmid (pQM1) isolated from a mixture of epilithic bacteria in vitro. The river temperature from March to November was found to influence transfer frequencies strongly (6.8 × 10−9 to 1.5 × 10−2 per recipient). A linear relationship existed between log10 transfer frequency and river temperature (6 to 21°C), a 2.6°C change in temperature giving a 10-fold change in transfer frequency. In vitro experiments showed that pQM1 transferred most efficiently between fluorescent pseudomonads and that one epilithic isolate (Pseudomonas fluorescens) was an efficient donor in situ. Experiments with a P. putida recipient showed that intact epilithic bacterial communities could transfer mercury resistance plasmids in situ at frequencies of up to 3.75 × 10−6 per recipient. Nineteen of the large (>250-kilobase) plasmids isolated by transfer into P. putida were studied in detail and grouped into seven types by restriction digests. Mercury resistance and UV resistance were found to be common linked phenotypes in 19 of the 23 plasmids tested.

Full text

PDF
972

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altherr M. R., Kasweck K. L. In situ studies with membrane diffusion chambers of antibiotic resistance transfer in Escherichia coli. Appl Environ Microbiol. 1982 Oct;44(4):838–843. doi: 10.1128/aem.44.4.838-843.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bagdasarian M., Lurz R., Rückert B., Franklin F. C., Bagdasarian M. M., Frey J., Timmis K. N. Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas. Gene. 1981 Dec;16(1-3):237–247. doi: 10.1016/0378-1119(81)90080-9. [DOI] [PubMed] [Google Scholar]
  3. Bale M. J., Fry J. C., Day M. J. Plasmid transfer between strains of Pseudomonas aeruginosa on membrane filters attached to river stones. J Gen Microbiol. 1987 Nov;133(11):3099–3107. doi: 10.1099/00221287-133-11-3099. [DOI] [PubMed] [Google Scholar]
  4. Bell J. B., Elliott G. E., Smith D. W. Influence of sewage treatment and urbanization on selection of multiple resistance in fecal coliform populations. Appl Environ Microbiol. 1983 Jul;46(1):227–232. doi: 10.1128/aem.46.1.227-232.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bennett P. M., Heritage J., Comanducci A., Dodd H. M. Evolution of R plasmids by replicon fusion. J Antimicrob Chemother. 1986 Oct;18 (Suppl 100):103–111. doi: 10.1093/jac/18.supplement_c.103. [DOI] [PubMed] [Google Scholar]
  6. Chandler P. M., Krishnapillai V. Isolation and properties of recombination-deficient mutants of Pseudomonas aeruginosa. Mutat Res. 1974 Apr;23(1):15–23. doi: 10.1016/0027-5107(74)90155-9. [DOI] [PubMed] [Google Scholar]
  7. Clark D. L., Weiss A. A., Silver S. Mercury and organomercurial resistances determined by plasmids in Pseudomonas. J Bacteriol. 1977 Oct;132(1):186–196. doi: 10.1128/jb.132.1.186-196.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gauthier M. J., Cauvin F., Breittmayer J. P. Influence of salts and temperature on the transfer of mercury resistance from a marine pseudomonad to Escherichia coli. Appl Environ Microbiol. 1985 Jul;50(1):38–40. doi: 10.1128/aem.50.1.38-40.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jacoby G. A. Properties of R plasmids determining gentamicin resistance by acetylation in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1974 Sep;6(3):239–252. doi: 10.1128/aac.6.3.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jones J. G., Gardener S., Simon B. M., Pickup R. W. Antibiotic resistant bacteria in Windermere and two remote upland tarns in the English Lake District. J Appl Bacteriol. 1986 May;60(5):443–453. doi: 10.1111/j.1365-2672.1986.tb05090.x. [DOI] [PubMed] [Google Scholar]
  11. KING E. O., WARD M. K., RANEY D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301–307. [PubMed] [Google Scholar]
  12. Kado C. I., Liu S. T. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol. 1981 Mar;145(3):1365–1373. doi: 10.1128/jb.145.3.1365-1373.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lacy G. H., Leary J. V. Transfer of antibiotic resistance plasmid RP1 into Pseudomonas glycinea and Pseudomonas phaseolicola in vitro and in planta. J Gen Microbiol. 1975 May;88(1):49–57. doi: 10.1099/00221287-88-1-49. [DOI] [PubMed] [Google Scholar]
  14. Mach P. A., Grimes D. J. R-plasmid transfer in a wastewater treatment plant. Appl Environ Microbiol. 1982 Dec;44(6):1395–1403. doi: 10.1128/aem.44.6.1395-1403.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Meckes M. C. Effect of UV light disinfection on antibiotic-resistant coliforms in wastewater effluents. Appl Environ Microbiol. 1982 Feb;43(2):371–377. doi: 10.1128/aem.43.2.371-377.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Quevedo-Sarmiento J., Ramos-Cormenzana A., Gonzalez-Lopez J. Isolation and characterization of aerobic heterotrophic bacteria from natural spring waters in the Lanjaron area (Spain). J Appl Bacteriol. 1986 Oct;61(4):365–372. doi: 10.1111/j.1365-2672.1986.tb04298.x. [DOI] [PubMed] [Google Scholar]
  17. Saye D. J., Ogunseitan O., Sayler G. S., Miller R. V. Potential for transduction of plasmids in a natural freshwater environment: effect of plasmid donor concentration and a natural microbial community on transduction in Pseudomonas aeruginosa. Appl Environ Microbiol. 1987 May;53(5):987–995. doi: 10.1128/aem.53.5.987-995.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Senior E., Bull A. T., Slater J. H. Enzyme evolution in a microbial community growing on the herbicide Dalapon. Nature. 1976 Oct 7;263(5577):476–479. doi: 10.1038/263476a0. [DOI] [PubMed] [Google Scholar]
  19. Singleton P., Anson A. E. Conjugal transfer of R-plasmid R1drd-19 in Escherichia coli below 22 degrees C. Appl Environ Microbiol. 1981 Nov;42(5):789–791. doi: 10.1128/aem.42.5.789-791.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stotzky G., Babich H. Survival of, and genetic transfer by, genetically engineered bacteria in natural environments. Adv Appl Microbiol. 1986;31:93–138. doi: 10.1016/s0065-2164(08)70440-4. [DOI] [PubMed] [Google Scholar]
  21. Summers A. O., Weiss R. B., Jacoby G. A. Transposition of mercury resistance from a transferable R plasmic of Escherichia coli. Plasmid. 1980 Jan;3(1):35–47. doi: 10.1016/s0147-619x(80)90032-3. [DOI] [PubMed] [Google Scholar]
  22. Talbot H. W., Jr, Yamamoto D. K., Smith M. W., Seidler R. J. Antibiotic resistance and its transfer among clinical and nonclinical Klebsiella strains in botanical environments. Appl Environ Microbiol. 1980 Jan;39(1):97–104. doi: 10.1128/aem.39.1.97-104.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wheatcroft R., Williams P. A. Rapid methods for the study of both stable and unstable plasmids in Pseudomonas. J Gen Microbiol. 1981 Jun;124(2):433–437. doi: 10.1099/00221287-124-2-433. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES