Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1988 May;54(5):1199–1202. doi: 10.1128/aem.54.5.1199-1202.1988

Enzymatic dehalogenation of chlorinated nitroaromatic compounds.

J Thiele 1, R Müller 1, F Lingens 1
PMCID: PMC202626  PMID: 3389813

Abstract

4-Chlorobenzoate dehalogenase from Pseudomonas sp. strain CBS3 converted 4-chloro-3,5-dinitrobenzoate to 3,5-dinitro-4-hydroxybenzoate and 1-chloro-2,4-dinitrobenzene to 2,4-dinitrophenol. The activities were 0.13 mU/mg of protein for 4-chloro-3,5-dinitrobenzoate and 0.16 mU/mg of protein for 1-chloro-2,4-dinitrobenzene compared with 0.5 mU/mg of protein for 4-chlorobenzoate.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atri F. R. Chlorierte Kohlenwasserstoffe in der Umwelt IV. Chlorbenzol, 1,2,4-Trichlorbenzol, Chlornitrobenzole, Chloraniline, 2-Chlorethanol, 1,3-Dichlorpropanol (2), Epichlorhydrin. Schriftenr Ver Wasser Boden Lufthyg. 1986;70:1–607. [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Bruhn C., Lenke H., Knackmuss H. J. Nitrosubstituted aromatic compounds as nitrogen source for bacteria. Appl Environ Microbiol. 1987 Jan;53(1):208–210. doi: 10.1128/aem.53.1.208-210.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hartmann J., Reineke W., Knackmuss H. J. Metabolism of 3-chloro-, 4-chloro-, and 3,5-dichlorobenzoate by a pseudomonad. Appl Environ Microbiol. 1979 Mar;37(3):421–428. doi: 10.1128/aem.37.3.421-428.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lingens F., Eberhardt H., Oltmanns O. Mikrobieller Abbau des Chloramphenicols. Biochim Biophys Acta. 1966 Dec 28;130(2):345–354. [PubMed] [Google Scholar]
  6. McCormick N. G., Feeherry F. E., Levinson H. S. Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl Environ Microbiol. 1976 Jun;31(6):949–958. doi: 10.1128/aem.31.6.949-958.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Müller R., Thiele J., Klages U., Lingens F. Incorporation of [18O]water into 4-hydroxybenzoic acid in the reaction of 4-chlorobenzoate dehalogenase from pseudomonas spec. CBS 3. Biochem Biophys Res Commun. 1984 Oct 15;124(1):178–182. doi: 10.1016/0006-291x(84)90933-1. [DOI] [PubMed] [Google Scholar]
  8. Renner G., Nguyen P. T. Mechanisms of the reductive denitration of pentachloronitrobenzene (PCNB) and the reductive dechlorination of hexachlorobenzene (HCB). Xenobiotica. 1984 Sep;14(9):705–710. doi: 10.3109/00498258409151468. [DOI] [PubMed] [Google Scholar]
  9. Spain J. C., Wyss O., Gibson D. T. Enzymatic oxidation of p-nitrophenol. Biochem Biophys Res Commun. 1979 May 28;88(2):634–641. doi: 10.1016/0006-291x(79)92095-3. [DOI] [PubMed] [Google Scholar]
  10. Sudhakar-Barik, Siddaramappa R., Sethunathan N. Metabolism of nitrophenols by bacteria isolated from parathion-amended flooded soil. Antonie Van Leeuwenhoek. 1976;42(4):461–470. doi: 10.1007/BF00410177. [DOI] [PubMed] [Google Scholar]
  11. Zeyer J., Kocher H. P., Timmis K. N. Influence of para-substituents on the oxidative metabolism of o-nitrophenols by Pseudomonas putida B2. Appl Environ Microbiol. 1986 Aug;52(2):334–339. doi: 10.1128/aem.52.2.334-339.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES